File size: 2,787 Bytes
7754df5
 
 
 
 
 
 
0015c06
 
 
 
7754df5
 
 
 
 
 
 
 
 
9b7075b
 
 
7754df5
d768d27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7754df5
 
0015c06
7754df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35477fa
e15dfee
 
9b7075b
 
 
 
 
 
7754df5
 
 
 
 
 
 
0015c06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Chakshu/conversation_terminator_classifier
  results: []
datasets:
- Chakshu/conversation_ender
language:
- en
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# Chakshu/conversation_terminator_classifier

This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0364
- Train Binary Accuracy: 0.9915
- Epoch: 8

## Example Usage
```py
from transformers import AutoTokenizer, TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

model_name = 'Chakshu/conversation_terminator_classifier' 

tokenizer = BertTokenizer.from_pretrained(model_name)
model = TFBertForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer("I will talk to you later", return_tensors="np", padding=True)
outputs = model(inputs.input_ids, inputs.attention_mask)
probabilities = tf.nn.sigmoid(outputs.logits)

# Round the probabilities to the nearest integer to get the class prediction
predicted_class = tf.round(probabilities)
print("The last message by the user indicates that the conversation has", "'ENDED'" if int(predicted_class.numpy()) == 1 else "'NOT ENDED'")
```

## Model description

Classifies if the user is ending the conversation or wanting to continue it.

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Binary Accuracy | Epoch |
|:----------:|:---------------------:|:-----:|
| 0.2552     | 0.9444                | 0     |
| 0.1295     | 0.9872                | 1     |
| 0.0707     | 0.9872                | 2     |
| 0.0859     | 0.9829                | 3     |
| 0.0484     | 0.9872                | 4     |
| 0.0363     | 0.9957                | 5     |
| 0.0209     | 1.0                   | 6     |
| 0.0268     | 0.9957                | 7     |
| 0.0364     | 0.9915                | 8     |


### Framework versions

- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3