File size: 2,787 Bytes
7754df5 0015c06 7754df5 9b7075b 7754df5 d768d27 7754df5 0015c06 7754df5 35477fa e15dfee 9b7075b 7754df5 0015c06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: Chakshu/conversation_terminator_classifier
results: []
datasets:
- Chakshu/conversation_ender
language:
- en
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Chakshu/conversation_terminator_classifier
This model is a fine-tuned version of [google/mobilebert-uncased](https://huggingface.co/google/mobilebert-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0364
- Train Binary Accuracy: 0.9915
- Epoch: 8
## Example Usage
```py
from transformers import AutoTokenizer, TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
model_name = 'Chakshu/conversation_terminator_classifier'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = TFBertForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer("I will talk to you later", return_tensors="np", padding=True)
outputs = model(inputs.input_ids, inputs.attention_mask)
probabilities = tf.nn.sigmoid(outputs.logits)
# Round the probabilities to the nearest integer to get the class prediction
predicted_class = tf.round(probabilities)
print("The last message by the user indicates that the conversation has", "'ENDED'" if int(predicted_class.numpy()) == 1 else "'NOT ENDED'")
```
## Model description
Classifies if the user is ending the conversation or wanting to continue it.
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Binary Accuracy | Epoch |
|:----------:|:---------------------:|:-----:|
| 0.2552 | 0.9444 | 0 |
| 0.1295 | 0.9872 | 1 |
| 0.0707 | 0.9872 | 2 |
| 0.0859 | 0.9829 | 3 |
| 0.0484 | 0.9872 | 4 |
| 0.0363 | 0.9957 | 5 |
| 0.0209 | 1.0 | 6 |
| 0.0268 | 0.9957 | 7 |
| 0.0364 | 0.9915 | 8 |
### Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3 |