FrancescoPeriti
commited on
Commit
•
9615074
1
Parent(s):
517ddd6
Update README.md
Browse files
README.md
CHANGED
@@ -22,10 +22,13 @@ The following `bitsandbytes` quantization config was used during training:
|
|
22 |
|
23 |
## Get it started
|
24 |
```python
|
25 |
-
|
|
|
26 |
from huggingface_hub import login
|
|
|
27 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AddedToken
|
28 |
|
|
|
29 |
login("[YOUR HF TOKEN HERE FOR USING LLAMA]")
|
30 |
config = PeftConfig.from_pretrained("ChangeIsKey/llama-7b-lexical-substitution")
|
31 |
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map='auto')
|
@@ -39,4 +42,61 @@ base_model.resize_token_embeddings(len(tokenizer))
|
|
39 |
|
40 |
model = PeftModel.from_pretrained(base_model, "ChangeIsKey/llama-7b-lexical-substitution")
|
41 |
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
```
|
|
|
22 |
|
23 |
## Get it started
|
24 |
```python
|
25 |
+
import torch
|
26 |
+
from datasets import Dataset
|
27 |
from huggingface_hub import login
|
28 |
+
from peft import PeftModel, PeftConfig
|
29 |
from transformers import AutoModelForCausalLM, AutoTokenizer, AddedToken
|
30 |
|
31 |
+
# load model and tokenizer
|
32 |
login("[YOUR HF TOKEN HERE FOR USING LLAMA]")
|
33 |
config = PeftConfig.from_pretrained("ChangeIsKey/llama-7b-lexical-substitution")
|
34 |
base_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map='auto')
|
|
|
42 |
|
43 |
model = PeftModel.from_pretrained(base_model, "ChangeIsKey/llama-7b-lexical-substitution")
|
44 |
model.eval()
|
45 |
+
|
46 |
+
# let's use this model
|
47 |
+
def formatting_func(records):
|
48 |
+
text_batch = []
|
49 |
+
|
50 |
+
for i in range(len(records['example'])):
|
51 |
+
example = records[i]['example']
|
52 |
+
start, end = records[i]['start'], records[i]['end']
|
53 |
+
|
54 |
+
target = f'**{example[start:end]}**'
|
55 |
+
input_text = f'{example[:start]} {target} {example[end:]}'
|
56 |
+
text_batch.append(f"{input_text}<|answer|>")
|
57 |
+
|
58 |
+
return text_batch
|
59 |
+
|
60 |
+
def tokenization(dataset):
|
61 |
+
return tokenizer(formatting_func(dataset),
|
62 |
+
truncation=True,
|
63 |
+
max_length=512,
|
64 |
+
padding=True,
|
65 |
+
return_tensors="pt").to("cuda")
|
66 |
+
|
67 |
+
|
68 |
+
# a toy example
|
69 |
+
examples = [{'example': 'The traffic jam on the highway made everyone late for work.', 'start': 12, 'end': 15},
|
70 |
+
{'example': 'I spread a generous layer of strawberry jam on my toast this morning', 'start': 40, 'end': 43}]
|
71 |
+
dataset = Dataset.from_list(examples)
|
72 |
+
|
73 |
+
|
74 |
+
batch_size = 32
|
75 |
+
output = list()
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
for i in range(0, len(dataset), batch_size):
|
79 |
+
model_input = tokenization(dataset.select(range(i, min(dataset.num_rows, i + batch_size))))
|
80 |
+
|
81 |
+
output_ids = model.generate(**model_input,
|
82 |
+
do_sample=True,
|
83 |
+
num_return_sequences=1,
|
84 |
+
max_new_tokens=30,
|
85 |
+
temperature=0.00001,
|
86 |
+
repetition_penalty=1/0.85,
|
87 |
+
top_k=40,
|
88 |
+
top_p=0.1)
|
89 |
+
|
90 |
+
answers = tokenizer.batch_decode(output_ids, skip_special_tokens=False)
|
91 |
+
|
92 |
+
for answer in answers:
|
93 |
+
answer = " ".join(answer.split('<|answer|>')[1:])
|
94 |
+
substitutes = [s.strip() for s in answer.split('<|end|>')[:-1] if s.strip() != ""]
|
95 |
+
output.append(", ".join(substitutes))
|
96 |
+
|
97 |
+
# output
|
98 |
+
dataset = dataset.add_column('substitutes', output)
|
99 |
+
for row in dataset:
|
100 |
+
target = row['example'][row['start']:row['end']]
|
101 |
+
print(f"Target: {target}\nExample: {row['example']}\nSubstitutes: {row['substitutes']}\n")
|
102 |
```
|