ChasingMercer commited on
Commit
7e9bfa9
·
1 Parent(s): 0d176a1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cats_vs_dogs
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: beit-base
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: cats_vs_dogs
17
+ type: cats_vs_dogs
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9976505766766339
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # beit-base
31
+
32
+ This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the cats_vs_dogs dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.0116
35
+ - Accuracy: 0.9977
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 8
56
+ - eval_batch_size: 8
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 32
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 3
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 0.0303 | 1.0 | 585 | 0.0186 | 0.9942 |
70
+ | 0.0374 | 2.0 | 1170 | 0.0150 | 0.9955 |
71
+ | 0.0559 | 3.0 | 1755 | 0.0116 | 0.9977 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.26.1
77
+ - Pytorch 1.13.1+cu116
78
+ - Datasets 2.10.1
79
+ - Tokenizers 0.13.2