File size: 10,665 Bytes
5d7e4f1
 
 
5345d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
---
license: llama2
---
# Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding

**Paper or resources for more information:**
[[Paper](https://huggingface.co/papers/2311.08046)] [[Code](https://github.com/PKU-YuanGroup/Chat-UniVi)]

## License
Llama 2 is licensed under the LLAMA 2 Community License, 
Copyright (c) Meta Platforms, Inc. All Rights Reserved.

## 😮 Highlights

### 💡 Unified visual representation for image and video
We employ **a set of dynamic visual tokens** to uniformly represent images and videos.
This representation framework empowers the model to efficiently utilize **a limited number of visual tokens** to simultaneously capture **the spatial details necessary for images** and **the comprehensive temporal relationship required for videos**.

### 🔥 Joint training strategy, making LLMs understand both image and video
Chat-UniVi is trained on a mixed dataset containing both images and videos, allowing direct application to tasks involving both mediums without requiring any modifications.

### 🤗 High performance, complementary learning with image and video
Extensive experimental results demonstrate that Chat-UniVi, as a unified model, consistently outperforms even existing methods exclusively designed for either images or videos.


### Inference for Video Understanding
```python
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image
from decord import VideoReader, cpu
import numpy as np


def _get_rawvideo_dec(video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, video_framerate=1, s=None, e=None):
    # speed up video decode via decord.

    if s is None:
        start_time, end_time = None, None
    else:
        start_time = int(s)
        end_time = int(e)
        start_time = start_time if start_time >= 0. else 0.
        end_time = end_time if end_time >= 0. else 0.
        if start_time > end_time:
            start_time, end_time = end_time, start_time
        elif start_time == end_time:
            end_time = start_time + 1

    if os.path.exists(video_path):
        vreader = VideoReader(video_path, ctx=cpu(0))
    else:
        print(video_path)
        raise FileNotFoundError

    fps = vreader.get_avg_fps()
    f_start = 0 if start_time is None else int(start_time * fps)
    f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
    num_frames = f_end - f_start + 1
    if num_frames > 0:
        # T x 3 x H x W
        sample_fps = int(video_framerate)
        t_stride = int(round(float(fps) / sample_fps))

        all_pos = list(range(f_start, f_end + 1, t_stride))
        if len(all_pos) > max_frames:
            sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)]
        else:
            sample_pos = all_pos

        patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]

        patch_images = torch.stack([image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images])
        slice_len = patch_images.shape[0]

        return patch_images, slice_len
    else:
        print("video path: {} error.".format(video_path))


if __name__ == '__main__':
    # Model Parameter
    model_path = "Chat-UniVi/Chat-UniVi"  # or "Chat-UniVi/Chat-UniVi-13B"
    video_path = ${video_path}

    # The number of visual tokens varies with the length of the video. "max_frames" is the maximum number of frames.
    # When the video is long, we will uniformly downsample the video to meet the frames when equal to the "max_frames".
    max_frames = 100

    # The number of frames retained per second in the video.
    video_framerate = 1

    # Input Text
    qs = "Describe the video."

    # Sampling Parameter
    conv_mode = "simple"
    temperature = 0.2
    top_p = None
    num_beams = 1

    disable_torch_init()
    model_path = os.path.expanduser(model_path)
    model_name = "ChatUniVi"
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()
    image_processor = vision_tower.image_processor

    if model.config.config["use_cluster"]:
        for n, m in model.named_modules():
            m = m.to(dtype=torch.bfloat16)

    # Check if the video exists
    if video_path is not None:
        video_frames, slice_len = _get_rawvideo_dec(video_path, image_processor, max_frames=max_frames, video_framerate=video_framerate)

        cur_prompt = qs
        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN * slice_len + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN * slice_len + '\n' + qs

        conv = conv_templates[conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(
            0).cuda()

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=video_frames.half().cuda(),
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                output_scores=True,
                return_dict_in_generate=True,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        output_ids = output_ids.sequences
        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()
        print(outputs)
```

### Inference for Image Understanding
```python
import torch
import os
from ChatUniVi.constants import *
from ChatUniVi.conversation import conv_templates, SeparatorStyle
from ChatUniVi.model.builder import load_pretrained_model
from ChatUniVi.utils import disable_torch_init
from ChatUniVi.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
from PIL import Image


if __name__ == '__main__':
    # Model Parameter
    model_path = "Chat-UniVi/Chat-UniVi"  # or "Chat-UniVi/Chat-UniVi-13B"
    image_path = ${image_path}

    # Input Text
    qs = "Describe the image."

    # Sampling Parameter
    conv_mode = "simple"
    temperature = 0.2
    top_p = None
    num_beams = 1

    disable_torch_init()
    model_path = os.path.expanduser(model_path)
    model_name = "ChatUniVi"
    tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)

    mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
    mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
    if mm_use_im_patch_token:
        tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
    if mm_use_im_start_end:
        tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()
    image_processor = vision_tower.image_processor

    # Check if the video exists
    if image_path is not None:
        cur_prompt = qs
        if model.config.mm_use_im_start_end:
            qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + '\n' + qs

        conv = conv_templates[conv_mode].copy()
        conv.append_message(conv.roles[0], qs)
        conv.append_message(conv.roles[1], None)
        prompt = conv.get_prompt()

        input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()

        image = Image.open(image_path)
        image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]

        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)

        with torch.inference_mode():
            output_ids = model.generate(
                input_ids,
                images=image_tensor.unsqueeze(0).half().cuda(),
                do_sample=True,
                temperature=temperature,
                top_p=top_p,
                num_beams=num_beams,
                max_new_tokens=1024,
                use_cache=True,
                stopping_criteria=[stopping_criteria])

        input_token_len = input_ids.shape[1]
        n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
        if n_diff_input_output > 0:
            print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
        outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
        outputs = outputs.strip()
        if outputs.endswith(stop_str):
            outputs = outputs[:-len(stop_str)]
        outputs = outputs.strip()
        print(outputs)
```