import torch from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union from transformers import Wav2Vec2Processor @dataclass class DataCollatorCTCWithPadding: """ Data collator that will dynamically pad the inputs received. Args: processor (:class:`~transformers.Wav2Vec2Processor`) The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). max_length_labels (:obj:`int`, `optional`): Maximum length of the ``labels`` returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ processor: Wav2Vec2Processor padding: Union[bool, str] = True max_length: Optional[int] = None max_length_labels: Optional[int] = None pad_to_multiple_of: Optional[int] = None pad_to_multiple_of_labels: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods input_features = [{"input_values": feature["input_values"]} for feature in features] label_features = [{"input_ids": feature["labels"]} for feature in features] batch = self.processor.pad( input_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) with self.processor.as_target_processor(): labels_batch = self.processor.pad( label_features, padding=self.padding, max_length=self.max_length_labels, pad_to_multiple_of=self.pad_to_multiple_of_labels, return_tensors="pt", ) # replace padding with -100 to ignore loss correctly labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) batch["labels"] = labels return batch