--- language: - tr license: apache-2.0 base_model: openai/whisper-base tags: - hf-asr-leaderboard - generated_from_trainer datasets: - fleurs metrics: - wer model-index: - name: Whisper Base Turkish 8000 - Chee Li results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Google Fleurs type: fleurs config: tr_tr split: None args: 'config: tr split: test' metrics: - name: Wer type: wer value: 25.847853142501553 --- # Whisper Base Turkish 8000 - Chee Li This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.5649 - Wer: 25.8479 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 850 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1634 | 5.5866 | 1000 | 0.4092 | 24.8833 | | 0.0075 | 11.1732 | 2000 | 0.4509 | 24.2066 | | 0.0024 | 16.7598 | 3000 | 0.4874 | 24.1910 | | 0.0012 | 22.3464 | 4000 | 0.5125 | 24.3777 | | 0.0008 | 27.9330 | 5000 | 0.5305 | 24.5644 | | 0.0005 | 33.5196 | 6000 | 0.5473 | 24.8289 | | 0.0004 | 39.1061 | 7000 | 0.5592 | 24.9922 | | 0.0003 | 44.6927 | 8000 | 0.5649 | 25.8479 | ### Framework versions - Transformers 4.43.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1