CheikhKane commited on
Commit
09155b8
·
verified ·
1 Parent(s): 362ddb5

Model save

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: camembert-base
5
+ tags:
6
+ - generated_from_trainer
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: french-ner-model
14
+ results: []
15
+ ---
16
+
17
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
18
+ should probably proofread and complete it, then remove this comment. -->
19
+
20
+ # french-ner-model
21
+
22
+ This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
23
+ It achieves the following results on the evaluation set:
24
+ - Loss: 0.0154
25
+ - Precision: 0.0
26
+ - Recall: 0.0
27
+ - F1: 0.0
28
+ - Accuracy: 0.9972
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 2e-05
48
+ - train_batch_size: 16
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 10
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
59
+ | No log | 1.0 | 160 | 0.1578 | 0.0 | 0.0 | 0.0 | 0.9528 |
60
+ | No log | 2.0 | 320 | 0.0457 | 0.0 | 0.0 | 0.0 | 0.9947 |
61
+ | No log | 3.0 | 480 | 0.0288 | 0.0 | 0.0 | 0.0 | 0.9962 |
62
+ | 0.1372 | 4.0 | 640 | 0.0228 | 0.0 | 0.0 | 0.0 | 0.9967 |
63
+ | 0.1372 | 5.0 | 800 | 0.0196 | 0.0 | 0.0 | 0.0 | 0.9968 |
64
+ | 0.1372 | 6.0 | 960 | 0.0177 | 0.0 | 0.0 | 0.0 | 0.9971 |
65
+ | 0.0245 | 7.0 | 1120 | 0.0166 | 0.0 | 0.0 | 0.0 | 0.9972 |
66
+ | 0.0245 | 8.0 | 1280 | 0.0159 | 0.0 | 0.0 | 0.0 | 0.9971 |
67
+ | 0.0245 | 9.0 | 1440 | 0.0155 | 0.0 | 0.0 | 0.0 | 0.9972 |
68
+ | 0.018 | 10.0 | 1600 | 0.0154 | 0.0 | 0.0 | 0.0 | 0.9972 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.46.2
74
+ - Pytorch 2.5.1+cpu
75
+ - Datasets 3.1.0
76
+ - Tokenizers 0.20.3