--- license: apache-2.0 base_model: JackFram/llama-160m tags: - generated_from_trainer metrics: - accuracy model-index: - name: llama-160m-boolq results: [] --- # llama-160m-boolq This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6795 - Accuracy: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.99 | 73 | 0.6870 | 0.5731 | | No log | 1.99 | 147 | 0.6825 | 0.5957 | | No log | 3.0 | 221 | 0.6809 | 0.6012 | | No log | 3.96 | 292 | 0.6795 | 0.5957 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.13.3