File size: 1,427 Bytes
99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 e6536dc 99d17f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
language:
- en
license: other
base_model: facebook/opt-350m
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: opt-350m-boolq
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE BOOLQ
type: glue
args: boolq
metrics:
- name: Accuracy
type: accuracy
value: 0.6975535168195719
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# opt-350m-boolq
This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the GLUE BOOLQ dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2006
- Accuracy: 0.6976
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.13.3
|