File size: 1,427 Bytes
99d17f2
e6536dc
 
99d17f2
 
 
 
e6536dc
 
99d17f2
 
 
 
e6536dc
 
 
 
 
 
 
 
 
 
 
 
99d17f2
 
 
 
 
 
 
e6536dc
99d17f2
e6536dc
 
99d17f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6536dc
99d17f2
e6536dc
99d17f2
 
 
e6536dc
99d17f2
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
language:
- en
license: other
base_model: facebook/opt-350m
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: opt-350m-boolq
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: GLUE BOOLQ
      type: glue
      args: boolq
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.6975535168195719
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# opt-350m-boolq

This model is a fine-tuned version of [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) on the GLUE BOOLQ dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2006
- Accuracy: 0.6976

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results



### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.18.0
- Tokenizers 0.13.3