update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- wikihow
|
7 |
+
metrics:
|
8 |
+
- rouge
|
9 |
+
model-index:
|
10 |
+
- name: t5-small-finetuned-cnndm-wikihow
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Sequence-to-sequence Language Modeling
|
14 |
+
type: text2text-generation
|
15 |
+
dataset:
|
16 |
+
name: wikihow
|
17 |
+
type: wikihow
|
18 |
+
args: all
|
19 |
+
metrics:
|
20 |
+
- name: Rouge1
|
21 |
+
type: rouge
|
22 |
+
value: 27.5037
|
23 |
+
---
|
24 |
+
|
25 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
26 |
+
should probably proofread and complete it, then remove this comment. -->
|
27 |
+
|
28 |
+
# t5-small-finetuned-cnndm-wikihow
|
29 |
+
|
30 |
+
This model is a fine-tuned version of [Sevil/t5-small-finetuned-cnndm_3epoch_v2](https://huggingface.co/Sevil/t5-small-finetuned-cnndm_3epoch_v2) on the wikihow dataset.
|
31 |
+
It achieves the following results on the evaluation set:
|
32 |
+
- Loss: 2.2653
|
33 |
+
- Rouge1: 27.5037
|
34 |
+
- Rouge2: 10.8442
|
35 |
+
- Rougel: 23.4674
|
36 |
+
- Rougelsum: 26.7997
|
37 |
+
- Gen Len: 18.5558
|
38 |
+
|
39 |
+
## Model description
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Intended uses & limitations
|
44 |
+
|
45 |
+
More information needed
|
46 |
+
|
47 |
+
## Training and evaluation data
|
48 |
+
|
49 |
+
More information needed
|
50 |
+
|
51 |
+
## Training procedure
|
52 |
+
|
53 |
+
### Training hyperparameters
|
54 |
+
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0003
|
57 |
+
- train_batch_size: 4
|
58 |
+
- eval_batch_size: 4
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 3
|
63 |
+
- mixed_precision_training: Native AMP
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
68 |
+
|:-------------:|:-----:|:------:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
|
69 |
+
| 2.8459 | 0.13 | 5000 | 2.5755 | 25.2929 | 8.7852 | 21.2379 | 24.5649 | 18.4758 |
|
70 |
+
| 2.7251 | 0.25 | 10000 | 2.5189 | 25.33 | 9.0505 | 21.4892 | 24.6523 | 18.4513 |
|
71 |
+
| 2.6696 | 0.38 | 15000 | 2.4805 | 26.3909 | 9.6858 | 22.3589 | 25.7297 | 18.4649 |
|
72 |
+
| 2.647 | 0.51 | 20000 | 2.4491 | 25.9234 | 9.3936 | 22.0086 | 25.2342 | 18.5558 |
|
73 |
+
| 2.5973 | 0.64 | 25000 | 2.4251 | 26.4988 | 9.8197 | 22.6201 | 25.8407 | 18.3438 |
|
74 |
+
| 2.5916 | 0.76 | 30000 | 2.4022 | 26.3149 | 9.8432 | 22.3695 | 25.6581 | 18.4506 |
|
75 |
+
| 2.5691 | 0.89 | 35000 | 2.3801 | 26.4198 | 9.8848 | 22.4856 | 25.7847 | 18.5381 |
|
76 |
+
| 2.5365 | 1.02 | 40000 | 2.3755 | 26.5846 | 10.0287 | 22.667 | 25.9606 | 18.5608 |
|
77 |
+
| 2.4649 | 1.14 | 45000 | 2.3663 | 26.5925 | 10.0569 | 22.6191 | 25.9247 | 18.5803 |
|
78 |
+
| 2.4539 | 1.27 | 50000 | 2.3490 | 26.9735 | 10.2389 | 22.9536 | 26.282 | 18.5126 |
|
79 |
+
| 2.4578 | 1.4 | 55000 | 2.3374 | 26.7878 | 10.2275 | 22.849 | 26.1188 | 18.6162 |
|
80 |
+
| 2.4365 | 1.53 | 60000 | 2.3266 | 27.1171 | 10.403 | 23.0596 | 26.4284 | 18.6128 |
|
81 |
+
| 2.428 | 1.65 | 65000 | 2.3209 | 27.1762 | 10.578 | 23.1577 | 26.5007 | 18.5246 |
|
82 |
+
| 2.4293 | 1.78 | 70000 | 2.3145 | 27.0896 | 10.5146 | 23.1502 | 26.4338 | 18.4604 |
|
83 |
+
| 2.4335 | 1.91 | 75000 | 2.2979 | 27.3373 | 10.6273 | 23.2944 | 26.6725 | 18.5403 |
|
84 |
+
| 2.3981 | 2.03 | 80000 | 2.3008 | 27.1857 | 10.6455 | 23.1333 | 26.5203 | 18.5412 |
|
85 |
+
| 2.3395 | 2.16 | 85000 | 2.2908 | 27.3123 | 10.7063 | 23.3126 | 26.626 | 18.4265 |
|
86 |
+
| 2.3463 | 2.29 | 90000 | 2.2869 | 27.5328 | 10.7662 | 23.4527 | 26.8613 | 18.5664 |
|
87 |
+
| 2.3481 | 2.42 | 95000 | 2.2802 | 27.4799 | 10.7826 | 23.4538 | 26.7912 | 18.5449 |
|
88 |
+
| 2.3345 | 2.54 | 100000 | 2.2774 | 27.3182 | 10.724 | 23.3276 | 26.669 | 18.5908 |
|
89 |
+
| 2.3254 | 2.67 | 105000 | 2.2713 | 27.3942 | 10.777 | 23.3918 | 26.7036 | 18.5681 |
|
90 |
+
| 2.3369 | 2.8 | 110000 | 2.2666 | 27.5976 | 10.9144 | 23.5832 | 26.9147 | 18.5471 |
|
91 |
+
| 2.3269 | 2.93 | 115000 | 2.2653 | 27.5037 | 10.8442 | 23.4674 | 26.7997 | 18.5558 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.18.0
|
97 |
+
- Pytorch 1.10.0+cu111
|
98 |
+
- Datasets 2.0.0
|
99 |
+
- Tokenizers 0.11.6
|