Chikashi commited on
Commit
52128ba
1 Parent(s): 54426a1

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -0
README.md ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wikihow
7
+ metrics:
8
+ - rouge
9
+ model-index:
10
+ - name: t5-small-finetuned-wikihow_3epoch
11
+ results:
12
+ - task:
13
+ name: Sequence-to-sequence Language Modeling
14
+ type: text2text-generation
15
+ dataset:
16
+ name: wikihow
17
+ type: wikihow
18
+ args: all
19
+ metrics:
20
+ - name: Rouge1
21
+ type: rouge
22
+ value: 25.5784
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # t5-small-finetuned-wikihow_3epoch
29
+
30
+ This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wikihow dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 2.5163
33
+ - Rouge1: 25.5784
34
+ - Rouge2: 8.9929
35
+ - Rougel: 21.5345
36
+ - Rougelsum: 24.9382
37
+ - Gen Len: 18.384
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 2e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 3
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
68
+ |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
69
+ | 2.9421 | 0.25 | 5000 | 2.6545 | 23.2336 | 7.5502 | 19.5899 | 22.5521 | 18.4076 |
70
+ | 2.8411 | 0.51 | 10000 | 2.6103 | 24.3524 | 8.2068 | 20.5238 | 23.6679 | 18.2606 |
71
+ | 2.7983 | 0.76 | 15000 | 2.5836 | 24.8169 | 8.4826 | 20.8765 | 24.1686 | 18.3211 |
72
+ | 2.7743 | 1.02 | 20000 | 2.5627 | 24.9904 | 8.5625 | 21.0344 | 24.3416 | 18.3786 |
73
+ | 2.7452 | 1.27 | 25000 | 2.5508 | 25.1497 | 8.6872 | 21.152 | 24.4751 | 18.3524 |
74
+ | 2.7353 | 1.53 | 30000 | 2.5384 | 25.2909 | 8.7408 | 21.2344 | 24.629 | 18.4453 |
75
+ | 2.7261 | 1.78 | 35000 | 2.5322 | 25.3748 | 8.7802 | 21.312 | 24.7191 | 18.3754 |
76
+ | 2.7266 | 2.03 | 40000 | 2.5265 | 25.4095 | 8.8915 | 21.3871 | 24.7685 | 18.4013 |
77
+ | 2.706 | 2.29 | 45000 | 2.5211 | 25.4372 | 8.8926 | 21.4124 | 24.7902 | 18.3776 |
78
+ | 2.7073 | 2.54 | 50000 | 2.5176 | 25.4925 | 8.9668 | 21.5103 | 24.8608 | 18.4303 |
79
+ | 2.703 | 2.8 | 55000 | 2.5163 | 25.5784 | 8.9929 | 21.5345 | 24.9382 | 18.384 |
80
+
81
+
82
+ ### Framework versions
83
+
84
+ - Transformers 4.17.0
85
+ - Pytorch 1.10.0+cu111
86
+ - Datasets 2.0.0
87
+ - Tokenizers 0.11.6