--- language: - my license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - chuuhtetnaing/myanmar-speech-dataset-openslr-80 model-index: - name: 'Whisper-large-v3-burmese ' results: [] --- # Whisper-large-v3-burmese This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the myanmar-speech-dataset-openslr-80 dataset. It achieves the following results on the evaluation set: - Loss: 0.1044 - Cer: 18.5592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2102 | 0.4392 | 1000 | 0.1902 | 27.2963 | | 0.1191 | 0.8783 | 2000 | 0.1044 | 18.5592 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1