update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- f1
|
7 |
+
model-index:
|
8 |
+
- name: electra-large-discriminator-nli-efl-tweeteval
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# electra-large-discriminator-nli-efl-tweeteval
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli](https://huggingface.co/ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Accuracy: 0.7943
|
20 |
+
- F1: 0.7872
|
21 |
+
- Loss: 0.3004
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 1e-06
|
41 |
+
- train_batch_size: 8
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 16
|
45 |
+
- total_train_batch_size: 128
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss |
|
53 |
+
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|
|
54 |
+
| 0.4384 | 1.0 | 163 | 0.7444 | 0.7308 | 0.3962 |
|
55 |
+
| 0.3447 | 2.0 | 326 | 0.7659 | 0.7552 | 0.3410 |
|
56 |
+
| 0.3057 | 3.0 | 489 | 0.7750 | 0.7688 | 0.3234 |
|
57 |
+
| 0.287 | 4.0 | 652 | 0.7857 | 0.7779 | 0.3069 |
|
58 |
+
| 0.2742 | 5.0 | 815 | 0.7887 | 0.7822 | 0.3030 |
|
59 |
+
| 0.2676 | 6.0 | 978 | 0.7939 | 0.7851 | 0.2982 |
|
60 |
+
| 0.2585 | 7.0 | 1141 | 0.7909 | 0.7822 | 0.3002 |
|
61 |
+
| 0.2526 | 8.0 | 1304 | 0.7943 | 0.7876 | 0.3052 |
|
62 |
+
| 0.2479 | 9.0 | 1467 | 0.7939 | 0.7847 | 0.2997 |
|
63 |
+
| 0.2451 | 10.0 | 1630 | 0.7956 | 0.7873 | 0.3014 |
|
64 |
+
| 0.2397 | 11.0 | 1793 | 0.7943 | 0.7872 | 0.3004 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.16.2
|
70 |
+
- Pytorch 1.12.0.dev20220417
|
71 |
+
- Datasets 2.1.0
|
72 |
+
- Tokenizers 0.10.3
|