File size: 7,609 Bytes
ae4c0ac
 
 
 
 
 
 
 
 
 
1aa49eb
 
 
 
ae4c0ac
 
 
 
 
 
 
 
 
 
 
b81b094
 
1aa49eb
b81b094
1aa49eb
b81b094
1aa49eb
 
b81b094
 
 
1aa49eb
b81b094
 
 
 
1aa49eb
b81b094
 
 
 
 
 
 
 
 
1aa49eb
 
 
b81b094
1aa49eb
b81b094
 
 
 
1aa49eb
 
b81b094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded24cb
1aa49eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded24cb
1aa49eb
 
 
 
 
 
ded24cb
1aa49eb
ded24cb
1aa49eb
 
 
 
 
 
ded24cb
1aa49eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ded24cb
1aa49eb
 
 
 
 
b81b094
 
1aa49eb
b81b094
1aa49eb
b81b094
 
1aa49eb
 
b81b094
1aa49eb
 
b81b094
1aa49eb
 
b81b094
 
 
1aa49eb
b81b094
 
1aa49eb
 
 
b81b094
1aa49eb
ded24cb
b81b094
1aa49eb
 
b81b094
1aa49eb
b81b094
 
 
 
 
 
1aa49eb
 
 
 
 
 
 
 
 
 
 
b81b094
1aa49eb
 
 
b81b094
1aa49eb
 
 
 
b81b094
 
1aa49eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b81b094
 
 
1aa49eb
b81b094
 
 
 
1aa49eb
b81b094
 
 
 
 
 
 
 
 
 
1aa49eb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
base_model: google/gemma-2-9b
tags:
- text-generation-inference
- transformers
- unsloth
- gemma2
- trl
license: apache-2.0
language:
- ja
datasets:
- llm-jp/magpie-sft-v1.0
- Aratako/Magpie-Tanuki-8B-annotated-96k
---

# Uploaded  model

- **Developed by:** Chrom256
- **License:** apache-2.0
- **Finetuned from model :** google/gemma-2-9b

This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)

訓練用データ
以下のデータでInstruction finetuningを実施した
- https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0
(Apache license 2.0)
- https://huggingface.co/datasets/Aratako/Magpie-Tanuki-8B-annotated-96k
(Apache license 2.0)
データをサンプリングして活用

実行コード
Google Colab用
リンク先:編集中
*リンク先のGoogle Colabノートを実行してください

以下に同じノートを同じコードを掲載します
```python

!pip install -q transformers==4.46.3 accelerate bitsandbytes
!pip install -q tqdm
!pip install flash-attn --no-build-isolation

import os
import torch
import json
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from torch.cuda.amp import autocast
from concurrent.futures import ThreadPoolExecutor
import threading

print("【重要】以下の手順でHugging Faceトークンを設定しておいてください")
print("1. 左メニューの'シークレット'タブを開く")
print("2. '新しいシークレット'をクリック")
print("3. 名前に'HF_TOKEN'を入力")
print("4. 値にHugging Faceトークンを入力して保存")
print("ファイルタブ内にelyza-tasks-100-TV_0.jsonlを配置しておいてください")
print("出力物は、新規に作成されるOutputファイルの中に格納されます")

# シークレットからHF_TOKENを取得
from google.colab import userdata
HF_TOKEN = userdata.get('HF_TOKEN')

if HF_TOKEN is None:
    raise ValueError("HF_TOKENが設定されていません。上記の手順でトークンを設定してください。")

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)

def load_model_and_tokenizer():
    model_id = "Chrom256/gemma-2-9b-it-lora_20241216_033631"
    base_model_id = "google/gemma-2-9b"
    downloaded_components = {"model": None, "tokenizer": None}
    download_lock = threading.Lock()

    def download_base_model():
        quantization_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_use_double_quant=True,
            bnb_4bit_compute_dtype=torch.bfloat16
        )

        model = AutoModelForCausalLM.from_pretrained(
            base_model_id,
            quantization_config=quantization_config,
            device_map="auto",
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
            attn_implementation="eager",
            low_cpu_mem_usage=True,
            token=HF_TOKEN
        )
        with download_lock:
            downloaded_components["model"] = model

    def download_tokenizer():
        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            trust_remote_code=True,
            token=HF_TOKEN
        )
        with download_lock:
            downloaded_components["tokenizer"] = tokenizer

    torch.cuda.empty_cache()

    # ThreadPoolExecutorを使用して並列ダウンロード
    with ThreadPoolExecutor(max_workers=2) as executor:
        model_future = executor.submit(download_base_model)
        tokenizer_future = executor.submit(download_tokenizer)

        model_future.result()
        tokenizer_future.result()

    model = downloaded_components["model"]
    tokenizer = downloaded_components["tokenizer"]

    torch.cuda.empty_cache()

    try:
        adapter_path = model_id
        print(f"Loading adapter from {adapter_path}")
        model.load_adapter(adapter_path, "default", token=HF_TOKEN)
        print("Adapter loaded successfully")
    except Exception as e:
        print(f"Error loading adapter: {e}")
        raise

    model.config.use_cache = True
    model.eval()

    torch.cuda.empty_cache()

    return model, tokenizer

def run_inference(model, tokenizer, tokenized_inputs, generation_config, batch_size=4):
    results = []

    for i in tqdm(range(0, len(tokenized_inputs), batch_size)):
        batch = tokenized_inputs[i:i+batch_size]

        prompts = [
            f"""<start_of_turn>system
簡潔に回答してください。装飾や特殊記号は使用しないでください。
<end_of_turn>
<start_of_turn>user
{item["input"]}
<end_of_turn>
<start_of_turn>model
""" for item in batch
        ]

        inputs = tokenizer(
            prompts,
            padding=True,
            truncation=True,
            return_tensors="pt"
        ).to(model.device)

        with torch.no_grad(), autocast(dtype=torch.bfloat16):
            outputs = model.generate(
                **inputs,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                **generation_config
            )

            for idx, output in enumerate(outputs):
                response = tokenizer.decode(output, skip_special_tokens=True)

                if 'model\n' in response:
                    response = response.split('model\n')[-1].strip()
                elif 'model' in response:
                    response = response.split('model')[-1].strip()

                response = post_process_output(response)

                results.append({
                    "task_id": batch[idx]["task_id"],
                    "input": batch[idx]["input"],
                    "output": response
                })

        del outputs, inputs
        torch.cuda.empty_cache()

    return results

def post_process_output(response):
    response = response.strip()
    symbols_to_replace = ['**', '`', '|', '```', '---', '===']
    for symbol in symbols_to_replace:
        response = response.replace(symbol, ' ')
    return ' '.join(response.split())

GENERATION_CONFIG = {
    "max_new_tokens": 512,
    "use_cache": True,
    "do_sample": False,
    "num_beams": 4,
    "repetition_penalty": 1.2,
    "length_penalty": 1.0,
    "early_stopping": False
}

def load_input_data(file_path):
    tokenized_inputs = []
    with open(file_path, "r") as f:
        for line in f:
            if line.strip():
                dt = json.loads(line)
                tokenized_inputs.append({
                    "task_id": dt["task_id"],
                    "input": dt["input"]
                })
    return tokenized_inputs

def save_results(results, output_dir):
    os.makedirs(output_dir, exist_ok=True)
    jsonl_path = os.path.join(output_dir, "Output.jsonl")

    with open(jsonl_path, 'w', encoding='utf-8') as f:
        for item in results:
            json.dump(item, f, ensure_ascii=False)
            f.write('\n')

    print(f"Saved results to: {jsonl_path}")

def main():
    model, tokenizer = load_model_and_tokenizer()
    tokenized_inputs = load_input_data("/content/elyza-tasks-100-TV_0.jsonl")
    results = run_inference(model, tokenizer, tokenized_inputs, GENERATION_CONFIG)
    save_results(results, "output")

if __name__ == "__main__":
    main()
```