--- base_model: google/gemma-2-9b tags: - text-generation-inference - transformers - unsloth - gemma2 - trl license: apache-2.0 language: - ja datasets: - llm-jp/magpie-sft-v1.0 - Aratako/Magpie-Tanuki-8B-annotated-96k --- # Uploaded model - **Developed by:** Chrom256 - **License:** apache-2.0 - **Finetuned from model :** google/gemma-2-9b This gemma2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) 訓練用データ 以下のデータでInstruction finetuningを実施した - https://huggingface.co/datasets/llm-jp/magpie-sft-v1.0 (Apache license 2.0) - https://huggingface.co/datasets/Aratako/Magpie-Tanuki-8B-annotated-96k (Apache license 2.0) データをサンプリングして活用 実行コード Google Colab用 リンク先:編集中 *リンク先のGoogle Colabノートを実行してください 以下に同じノートを同じコードを掲載します ```python !pip install -q transformers==4.46.3 accelerate bitsandbytes !pip install -q tqdm !pip install flash-attn --no-build-isolation import os import torch import json from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from torch.cuda.amp import autocast from concurrent.futures import ThreadPoolExecutor import threading print("【重要】以下の手順でHugging Faceトークンを設定しておいてください") print("1. 左メニューの'シークレット'タブを開く") print("2. '新しいシークレット'をクリック") print("3. 名前に'HF_TOKEN'を入力") print("4. 値にHugging Faceトークンを入力して保存") print("ファイルタブ内にelyza-tasks-100-TV_0.jsonlを配置しておいてください") print("出力物は、新規に作成されるOutputファイルの中に格納されます") # シークレットからHF_TOKENを取得 from google.colab import userdata HF_TOKEN = userdata.get('HF_TOKEN') if HF_TOKEN is None: raise ValueError("HF_TOKENが設定されていません。上記の手順でトークンを設定してください。") quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) def load_model_and_tokenizer(): model_id = "Chrom256/gemma-2-9b-it-lora_20241216_033631" base_model_id = "google/gemma-2-9b" downloaded_components = {"model": None, "tokenizer": None} download_lock = threading.Lock() def download_base_model(): quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained( base_model_id, quantization_config=quantization_config, device_map="auto", trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="eager", low_cpu_mem_usage=True, token=HF_TOKEN ) with download_lock: downloaded_components["model"] = model def download_tokenizer(): tokenizer = AutoTokenizer.from_pretrained( model_id, trust_remote_code=True, token=HF_TOKEN ) with download_lock: downloaded_components["tokenizer"] = tokenizer torch.cuda.empty_cache() # ThreadPoolExecutorを使用して並列ダウンロード with ThreadPoolExecutor(max_workers=2) as executor: model_future = executor.submit(download_base_model) tokenizer_future = executor.submit(download_tokenizer) model_future.result() tokenizer_future.result() model = downloaded_components["model"] tokenizer = downloaded_components["tokenizer"] torch.cuda.empty_cache() try: adapter_path = model_id print(f"Loading adapter from {adapter_path}") model.load_adapter(adapter_path, "default", token=HF_TOKEN) print("Adapter loaded successfully") except Exception as e: print(f"Error loading adapter: {e}") raise model.config.use_cache = True model.eval() torch.cuda.empty_cache() return model, tokenizer def run_inference(model, tokenizer, tokenized_inputs, generation_config, batch_size=4): results = [] for i in tqdm(range(0, len(tokenized_inputs), batch_size)): batch = tokenized_inputs[i:i+batch_size] prompts = [ f"""system 簡潔に回答してください。装飾や特殊記号は使用しないでください。 user {item["input"]} model """ for item in batch ] inputs = tokenizer( prompts, padding=True, truncation=True, return_tensors="pt" ).to(model.device) with torch.no_grad(), autocast(dtype=torch.bfloat16): outputs = model.generate( **inputs, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, **generation_config ) for idx, output in enumerate(outputs): response = tokenizer.decode(output, skip_special_tokens=True) if 'model\n' in response: response = response.split('model\n')[-1].strip() elif 'model' in response: response = response.split('model')[-1].strip() response = post_process_output(response) results.append({ "task_id": batch[idx]["task_id"], "input": batch[idx]["input"], "output": response }) del outputs, inputs torch.cuda.empty_cache() return results def post_process_output(response): response = response.strip() symbols_to_replace = ['**', '`', '|', '```', '---', '==='] for symbol in symbols_to_replace: response = response.replace(symbol, ' ') return ' '.join(response.split()) GENERATION_CONFIG = { "max_new_tokens": 512, "use_cache": True, "do_sample": False, "num_beams": 4, "repetition_penalty": 1.2, "length_penalty": 1.0, "early_stopping": False } def load_input_data(file_path): tokenized_inputs = [] with open(file_path, "r") as f: for line in f: if line.strip(): dt = json.loads(line) tokenized_inputs.append({ "task_id": dt["task_id"], "input": dt["input"] }) return tokenized_inputs def save_results(results, output_dir): os.makedirs(output_dir, exist_ok=True) jsonl_path = os.path.join(output_dir, "Output.jsonl") with open(jsonl_path, 'w', encoding='utf-8') as f: for item in results: json.dump(item, f, ensure_ascii=False) f.write('\n') print(f"Saved results to: {jsonl_path}") def main(): model, tokenizer = load_model_and_tokenizer() tokenized_inputs = load_input_data("/content/elyza-tasks-100-TV_0.jsonl") results = run_inference(model, tokenizer, tokenized_inputs, GENERATION_CONFIG) save_results(results, "output") if __name__ == "__main__": main() ```