File size: 7,401 Bytes
fa10685 cb2b48a fa10685 e85f270 6d3034f 7d3383a cb2b48a fa10685 e85f270 0723fdf e85f270 20b2d6a e85f270 b3767a6 e85f270 ac11ad8 798b7fe cb2b48a 195a19c cb2b48a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
---
language:
- en
- ru
license: llama2
tags:
- merge
- mergekit
- nsfw
- not-for-all-audiences
model-index:
- name: Gembo-v1-70b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.25
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.98
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 70.85
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 63.25
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ChuckMcSneed/Gembo-v1-70b
name: Open LLM Leaderboard
---
![logo-gembo.png](logo-gembo.png)
This is my first "serious"(with practical use cases) experimental merge. Judge harshly. Mainly made for RP, but should be okay as an assistant. Turned out quite good, considering the amount of LORAs I merged into it.
# Observations
- GPTisms and repetition: put temperature and rep. pen. higher, make GPTisms stop sequences
- A bit different than the ususal stuff; I'd say that it has so much slop in it that it unslops itself
- Lightly censored
- Fairly neutral, can be violent if you ask it really good, Goliath is a bit better at it
- Has a bit of optimism baked in, but it's not very severe
- Doesn't know when to stop, can be quite verbose or just stop almost immediately(maybe wants to use LimaRP settings idk)
- Sometimes can't handle '
- Second model that tried to be funny unprompted to me(First one was Goliath)
- Moderately intelligent
- Quite creative
# Naming
Internal name of this model was euryale-guano-saiga-med-janboros-kim-lima-wiz-tony-d30-s40, but I decided to keep it short, and since it was iteration G in my files, I called it "Gembo".
# Quants
Thanks for GGUF quants, [@Artefact2](https://huggingface.co/Artefact2)!
- [GGUF](https://huggingface.co/Artefact2/Gembo-v1-70b-GGUF)
# Prompt format
Alpaca. You can also try some other formats, I'm pretty sure it has a lot of them from all those merges.
```
### Instruction:
{instruction}
### Response:
```
# Settings
As I already mentioned, high temperature and rep.pen. works great.
For RP try something like this:
- temperature=5
- MinP=0.10
- rep.pen.=1.15
Adjust to match your needs.
# How it was created
I took Sao10K/Euryale-1.3-L2-70B (Good base model) and added
- Mikael110/llama-2-70b-guanaco-qlora (Creativity+assistant)
- IlyaGusev/saiga2_70b_lora (Creativity+assistant)
- s1ghhh/medllama-2-70b-qlora-1.1 (More data)
- v2ray/Airoboros-2.1-Jannie-70B-QLoRA (Creativity+assistant)
- Chat-Error/fiction.live-Kimiko-V2-70B (Creativity)
- Doctor-Shotgun/limarpv3-llama2-70b-qlora (Creativity)
- v2ray/LLaMA-2-Wizard-70B-QLoRA (Creativity+assistant)
- v2ray/TonyGPT-70B-QLoRA (Special spice)
Then I SLERP-merged it with cognitivecomputations/dolphin-2.2-70b (Needed to bridge the gap between this wonderful mess and Smaxxxer, otherwise it's quality is low) with 0.3t and then SLERP-merged it again with ChuckMcSneed/SMaxxxer-v1-70b (Creativity) with 0.4t. For SLERP-merges I used https://github.com/arcee-ai/mergekit.
# Benchmarks (Do they even mean anything anymore?)
### NeoEvalPlusN_benchmark
[My meme benchmark.](https://huggingface.co/datasets/ChuckMcSneed/NeoEvalPlusN_benchmark)
| Test name | Gembo |
| ---------- | ---------- |
| B | 2.5 |
| C | 1.5 |
| D | 3 |
| S | 7.5 |
| P | 5.25 |
| Total | 19.75 |
Absurdly high. That's what happens when you optimize the merges for a benchmark.
### WolframRavenwolf
Benchmark by [@wolfram](https://huggingface.co/wolfram)
Artefact2/Gembo-v1-70b-GGUF GGUF Q5_K_M, 4K context, Alpaca format:
- ✅ Gave correct answers to all 18/18 multiple choice questions! Just the questions, no previous information, gave correct answers: 16/18
- ✅ Consistently acknowledged all data input with "OK".
- ➖ Did NOT follow instructions to answer with just a single letter or more than just a single letter.
This shows that this model can be used for real world use cases as an assistant.
### [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
[Leaderboard on Huggingface](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|Model |Average|ARC |HellaSwag|MMLU |TruthfulQA|Winogrande|GSM8K|
|--------------------------------|-------|-----|---------|-----|----------|----------|-----|
|ChuckMcSneed/Gembo-v1-70b |70.51 |71.25|86.98 |70.85|63.25 |80.51 |50.19|
|ChuckMcSneed/SMaxxxer-v1-70b |72.23 |70.65|88.02 |70.55|60.7 |82.87 |60.58|
Looks like adding a shitton of RP stuff decreased HellaSwag, WinoGrande and GSM8K, but increased TruthfulQA, MMLU and ARC. Interesting. To be hosnest, I'm a bit surprised that it didn't do that much worse.
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ChuckMcSneed__Gembo-v1-70b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.51|
|AI2 Reasoning Challenge (25-Shot)|71.25|
|HellaSwag (10-Shot) |86.98|
|MMLU (5-Shot) |70.85|
|TruthfulQA (0-shot) |63.25|
|Winogrande (5-shot) |80.51|
|GSM8k (5-shot) |50.19|
|