File size: 3,961 Bytes
8c65296 7a5565f 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 bdb6dee 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 798a8f1 8c65296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import os
import glob
import requests
import json
from pprint import pprint
import base64
from io import BytesIO
# Replace with the actual path to your image file and folder
x_path = "./init.png"
y_folder = "./Input_Images"
output_folder = "output"
os.makedirs(output_folder, exist_ok=True)
def get_image_paths(folder):
image_extensions = ("*.jpg", "*.jpeg", "*.png", "*.bmp")
files = []
for ext in image_extensions:
files.extend(glob.glob(os.path.join(folder, ext)))
return sorted(files)
y_paths = get_image_paths(y_folder)
def send_request(last_image_path, temp_path,current_image_path):
url = "http://localhost:7860/sdapi/v1/img2img"
with open(last_image_path, "rb") as f:
last_image = base64.b64encode(f.read()).decode("utf-8")
with open(current_image_path, "rb") as b:
current_image = base64.b64encode(b.read()).decode("utf-8")
data = {
"init_images": [current_image],
"inpainting_fill": 0,
"inpaint_full_res": True,
"inpaint_full_res_padding": 1,
"inpainting_mask_invert": 1,
"resize_mode": 0,
"denoising_strength": 0.45,
"prompt": "pop art, painting, highly detailed,",
"negative_prompt": "(ugly:1.3), (fused fingers), (too many fingers), (bad anatomy:1.5), (watermark:1.5), (words), letters, untracked eyes, asymmetric eyes, floating head, (logo:1.5), (bad hands:1.3), (mangled hands:1.2), (missing hands), (missing arms), backward hands, floating jewelry, unattached jewelry, floating head, doubled head, unattached head, doubled head, head in body, (misshapen body:1.1), (badly fitted headwear:1.2), floating arms, (too many arms:1.5), limbs fused with body, (facial blemish:1.5), badly fitted clothes, imperfect eyes, untracked eyes, crossed eyes, hair growing from clothes, partial faces, hair not attached to head",
"alwayson_scripts": {
"ControlNet":{
"args": [
{
"input_image": current_image,
"module": "hed",
"model": "control_hed-fp16 [13fee50b]",
"weight": 1.5,
"guidance": 1,
},
{
"input_image": last_image,
"model": "temporalnetv3 [b146ac48]",
"module": "none",
"weight": 0.7,
"guidance": 1,
}
]
}
},
"seed": 3189343382,
"subseed": -1,
"subseed_strength": -1,
"sampler_index": "Euler a",
"batch_size": 1,
"n_iter": 1,
"steps": 20,
"cfg_scale": 6,
"width": 512,
"height": 512,
"restore_faces": True,
"include_init_images": True,
"override_settings": {},
"override_settings_restore_afterwards": True
}
response = requests.post(url, json=data)
if response.status_code == 200:
return response.content
else:
try:
error_data = response.json()
print("Error:")
print(str(error_data))
except json.JSONDecodeError:
print(f"Error: Unable to parse JSON error data.")
return None
output_images = []
output_images.append(send_request(x_path,y_folder, y_paths[0]))
output_paths = []
for i in range(1, len(y_paths)):
result_image = output_images[i-1]
temp_image_path = os.path.join(output_folder, f"temp_image_{i}.png")
data = json.loads(result_image)
encoded_image = data["images"][0]
with open(temp_image_path, "wb") as f:
f.write(base64.b64decode(encoded_image))
output_paths.append(temp_image_path)
result = send_request(temp_image_path, y_folder, y_paths[i])
output_images.append(result)
print(f"Written data for frame {i}:")
|