File size: 14,318 Bytes
4d8800b |
1 |
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a1ea60f8ca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a1ea60f8d30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a1ea60f8dc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a1ea60f8e50>", "_build": "<function ActorCriticPolicy._build at 0x7a1ea60f8ee0>", "forward": "<function ActorCriticPolicy.forward at 0x7a1ea60f8f70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a1ea60f9000>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a1ea60f9090>", "_predict": "<function ActorCriticPolicy._predict at 0x7a1ea60f9120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a1ea60f91b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a1ea60f9240>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a1ea60f92d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a1e49025140>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689930700946726009, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAN+szD5S5jA+peMgP6YZRD+Gts++kpcIwJDH1b6jDMm/NYnDP/3eWb9zDKU+4tlYPTrgz78Kn5++t33jPhXhgL9PHjS/qRu6PvitkD9VasG/4kKOv/MeCj+Ya8y9WbHXPzrtqb/uOB/AaSkZwNbVhr+kakS/FdAWP4JmDT+n5Nk+FpskP+hCUz/yFVa/FigRP61Fir+g+aI+jJQMv8nmRj8A7mu/6y99P4Ptcz+Z7bg845m2P7mu976gWEC/OgrYPhAdfb/Gn9g9lstGvs7Elb8M1kA/2czNPpfx1T7W1Ya/5dtlP2VlKTsUSx0/plsgQMeJEMDBWgZAWJiZv2UFK78aRq0+/veuP6E0Fj+lgJI+creFPg01Bj20MXQ/75cxPjSjWr9kc6q/bWoRv9OogD+FPI2/uSoJwIAxmr/CJiU+DNZAP9nMzT6X8dU+1tWGv9EcQ79UyUk/RLvqPqy4hr8W+329lrkSPwxP+b4IBYS+5rGNv34HWjxxcQm/TOlDwDfPrL/caKM9Js51P+VPvDyc7Q6/cyfqP7HkMD8LyVHAe8RvvzF2kj+ZQuA+vVmKPjrtqb/ZzM0+aSkZwLwFcz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACmI7Y1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWMZYPQAAAADaDfW/AAAAAMP25z0AAAAADiHjPwAAAAAtUm09AAAAAJtJ7z8AAAAAq9t8PQAAAABB7wDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2OvttQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMv64j0AAAAApt7pvwAAAABqqAO+AAAAAFgj4D8AAAAAu5UPPQAAAAAb99k/AAAAAGKqAb4AAAAAASYAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHwpkjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDl15G8AAAAAHMw3r8AAAAAE2QCvQAAAADa1eY/AAAAAOxYqj0AAAAApErmPwAAAAAjj/+9AAAAAM5o9L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB1pzC2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAw/6gPQAAAAAaM/K/AAAAAH2+Nb0AAAAAYqTnPwAAAABUk+E9AAAAADQ74D8AAAAAisTCPQAAAACneOy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEEuCWeHzqMAWyUTegDjAF0lEdAq4Yd7OVxCXV9lChoBkdAknFsBZIQOGgHTegDaAhHQKuIEafjCHh1fZQoaAZHQJNXgN6PbPBoB03oA2gIR0CrjPPd/J/5dX2UKGgGR0CZvA2+wkgPaAdN6ANoCEdAq5A1Qfp2U3V9lChoBkdAl5cakIomX2gHTegDaAhHQKuWn40uUUx1fZQoaAZHQJZkOkRBeHBoB03oA2gIR0CrmIcAzYVZdX2UKGgGR0CSNnANG3F2aAdN6ANoCEdAq5xb+717IHV9lChoBkdAlgzkBGQSz2gHTegDaAhHQKuegt/WlM11fZQoaAZHQJJmicEvCdloB03oA2gIR0CrovP7el9CdX2UKGgGR0CXKKgGKQ7taAdN6ANoCEdAq6TvRmbsnnV9lChoBkdAlpFZLuhK2GgHTegDaAhHQKuosR7qptJ1fZQoaAZHQI+lgJPZZjhoB03oA2gIR0Crq2PUrkKedX2UKGgGR0CRXpWyC4BnaAdN6ANoCEdAq7IvV7Qb/HV9lChoBkdAlghiJGe+VWgHTegDaAhHQKu1M+EAYHh1fZQoaAZHQJPpzngYP5JoB03oA2gIR0CruVvOIInjdX2UKGgGR0CTdEFCswL3aAdN6ANoCEdAq7t+/L1VYXV9lChoBkdAlOPAF9roGWgHTegDaAhHQKu/5ZcLSeB1fZQoaAZHQJevYvM8ox5oB03oA2gIR0Crwd7KA8SxdX2UKGgGR0CXFT2Q4jrzaAdN6ANoCEdAq8WhsEaESXV9lChoBkdAl2alG0/nn2gHTegDaAhHQKvHwd1dPcl1fZQoaAZHQJfOhShrWRRoB03oA2gIR0CrzSXzlLezdX2UKGgGR0CVs1gG8mKJaAdN6ANoCEdAq9AWmJm/WXV9lChoBkdAmIXF49ovjGgHTegDaAhHQKvV31g6U7l1fZQoaAZHQJaKLduYQatoB03oA2gIR0Cr2FOh9LHudX2UKGgGR0CWM3F0gbIcaAdN6ANoCEdAq9ywE+xGD3V9lChoBkdAmSEoXTEzf2gHTegDaAhHQKvenfWtlqd1fZQoaAZHQJbWzYChew9oB03oA2gIR0Cr4nWl2vB8dX2UKGgGR0CXE2IEKVpsaAdN6ANoCEdAq+SjPrv9cnV9lChoBkdAkaT500WM0mgHTegDaAhHQKvpNNoJzDJ1fZQoaAZHQJWDFTUAks1oB03oA2gIR0Cr64Sh8IAwdX2UKGgGR0CW0iaSs8xLaAdN6ANoCEdAq/EqhDgIhXV9lChoBkdAl5MmorFwUGgHTegDaAhHQKv0dCm/Fit1fZQoaAZHQJTV/l/6O5toB03oA2gIR0Cr+g4k3S8bdX2UKGgGR0CYB+WHk92YaAdN6ANoCEdAq/wNelbeM3V9lChoBkdAlRuy9ytFKGgHTegDaAhHQKv/6o/A0sR1fZQoaAZHQJrfQ+GGmDVoB03oA2gIR0CsAhJxWDHwdX2UKGgGR0CWINBtUGVzaAdN6ANoCEdArAahTjvNNnV9lChoBkdAkZPxt1p0wWgHTegDaAhHQKwIlNxEORV1fZQoaAZHQJR2rnSv1UVoB03oA2gIR0CsDN3nZCfIdX2UKGgGR0CV7NKsuFpPaAdN6ANoCEdArBALHlwLmnV9lChoBkdAkP3i619fC2gHTegDaAhHQKwXFjrAxi51fZQoaAZHQJO5TUWl/H5oB03oA2gIR0CsGWP1+RYBdX2UKGgGR0CH7gZpi7TVaAdN6ANoCEdArB1FcIJJG3V9lChoBkdAkzsIRNATqWgHTegDaAhHQKwfdDCxeLN1fZQoaAZHQJSLmn889wFoB03oA2gIR0CsI+TN2TxHdX2UKGgGR0CVu7iNKh+OaAdN6ANoCEdArCXRvaURnXV9lChoBkdAmCbSb6P8ymgHTegDaAhHQKwpp/FR51N1fZQoaAZHQJIN4052hZhoB03oA2gIR0CsK73KbKA8dX2UKGgGR0CWc3EVWS2ZaAdN6ANoCEdArDI48wHqvHV9lChoBkdAlh3SCnP3SWgHTegDaAhHQKw1PxbSqlx1fZQoaAZHQJbRjw5NoJ1oB03oA2gIR0CsOhl9Sde6dX2UKGgGR0CTHEASWZ7YaAdN6ANoCEdArDw480UGmnV9lChoBkdAla1tA5aNdmgHTegDaAhHQKxAolvZRKp1fZQoaAZHQJXnkISlFc9oB03oA2gIR0CsQpMqBmPHdX2UKGgGR0CWOh5H3DekaAdN6ANoCEdArEZal1r6+HV9lChoBkdAmyojgydnTWgHTegDaAhHQKxIk2itaIN1fZQoaAZHQJoxgfcN6PdoB03oA2gIR0CsTUVX/5tWdX2UKGgGR0CXmwBmf5DaaAdN6ANoCEdArFAlECvHLnV9lChoBkdAllMnJ9y93GgHTegDaAhHQKxV8dYGMXJ1fZQoaAZHQJdhFU1hsqJoB03oA2gIR0CsWU5W7voedX2UKGgGR0CXK0XZoPCmaAdN6ANoCEdArF3M9QoCuHV9lChoBkdAl00bQ1JlKGgHTegDaAhHQKxfy5q/M4d1fZQoaAZHQJR8qRV6u4hoB03oA2gIR0CsY5Kj8DSxdX2UKGgGR0CWz9D9wWFfaAdN6ANoCEdArGXjVSXMQnV9lChoBkdAlg6T8pCrtGgHTegDaAhHQKxqZfUnXup1fZQoaAZHQJY4ux1PnCBoB03oA2gIR0CsbF99Dx9YdX2UKGgGR0CSSLxCpm29aAdN6ANoCEdArHGQ6Mir1nV9lChoBkdAk2/4yXUpeGgHTegDaAhHQKx04bhm5Dt1fZQoaAZHQJZJPnnuAqdoB03oA2gIR0CsezAZsKsudX2UKGgGR0CVVQ+S8rZraAdN6ANoCEdArH019Wp6yHV9lChoBkdAlr4YuK4x12gHTegDaAhHQKyBBPrOZ9d1fZQoaAZHQJYlXEAHVwxoB03oA2gIR0CsgzORLbpNdX2UKGgGR0CX+81UVBUraAdN6ANoCEdArIeuenQ6ZHV9lChoBkdAluT11jiGWWgHTegDaAhHQKyJrBoEjgR1fZQoaAZHQJhCwHmig01oB03oA2gIR0CsjX/F72L6dX2UKGgGR0CTy41Aqur7aAdN6ANoCEdArJCUAR02cnV9lChoBkdAlrZC79Q40mgHTegDaAhHQKyXbD/EOy51fZQoaAZHQJNLlhuwX69oB03oA2gIR0Csmnf1pTMrdX2UKGgGR0CXOG3rleWwaAdN6ANoCEdArJ5VN8E3bXV9lChoBkdAlrM4CIUJwGgHTegDaAhHQKygcNlRP451fZQoaAZHQJaCKMKkVN5oB03oA2gIR0CspQe+ueSTdX2UKGgGR0CWaXtTkyULaAdN6ANoCEdArKb+P5pJw3V9lChoBkdAlNf44Qz1smgHTegDaAhHQKyqwdDpkf91fZQoaAZHQJbXC9AX2uhoB03oA2gIR0CsrOIpx3mndX2UKGgGR0CWLNtnwob5aAdN6ANoCEdArLKR8a4tpXV9lChoBkdAl3rQHu7YkGgHTegDaAhHQKy1kZgogFJ1fZQoaAZHQJfY6b4Ju2toB03oA2gIR0Csu08NpdrwdX2UKGgGR0CYoefO2RaHaAdN6ANoCEdArL10pXp4bHV9lChoBkdAml9rEDQqqmgHTegDaAhHQKzB+Jswco91fZQoaAZHQJjbvblA/s5oB03oA2gIR0Csw/K3NLUTdX2UKGgGR0CZru668QI2aAdN6ANoCEdArMfWIwdsBXV9lChoBkdAlY2Pj4pMH2gHTegDaAhHQKzKBcD8tPJ1fZQoaAZHQJgSJNpM6BBoB03oA2gIR0CszoDe9Ba+dX2UKGgGR0CR1T8k2P1daAdN6ANoCEdArNE8B6rvLHV9lChoBkdAl+/twvQF92gHTegDaAhHQKzX1lAeJYV1fZQoaAZHQJKwBqHoHLRoB03oA2gIR0Cs26I3Jgb7dX2UKGgGR0CWGv0QbuMNaAdN6ANoCEdArOMKtT1kD3V9lChoBkdAkY/QOWjXWmgHTegDaAhHQKzmOv0yxiZ1fZQoaAZHQJNkuc9W6shoB03oA2gIR0Cs6k4/NZ/1dX2UKGgGR0CTVss/6frbaAdN6ANoCEdArOx+GfwqiHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}} |