osanseviero
commited on
Commit
•
2720945
1
Parent(s):
9df9e84
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
datasets:
|
4 |
+
- librispeech_asr
|
5 |
+
tags:
|
6 |
+
- speech
|
7 |
+
- audio
|
8 |
+
- automatic-speech-recognition
|
9 |
+
- hf-asr-leaderboard
|
10 |
+
license: mit
|
11 |
+
pipeline_tag: automatic-speech-recognition
|
12 |
+
widget:
|
13 |
+
- example_title: Librispeech sample 1
|
14 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
15 |
+
- example_title: Librispeech sample 2
|
16 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
17 |
+
model-index:
|
18 |
+
- name: s2t-small-librispeech-asr
|
19 |
+
results:
|
20 |
+
- task:
|
21 |
+
name: Automatic Speech Recognition
|
22 |
+
type: automatic-speech-recognition
|
23 |
+
dataset:
|
24 |
+
name: LibriSpeech (clean)
|
25 |
+
type: librispeech_asr
|
26 |
+
config: clean
|
27 |
+
split: test
|
28 |
+
args:
|
29 |
+
language: en
|
30 |
+
metrics:
|
31 |
+
- name: Test WER
|
32 |
+
type: wer
|
33 |
+
value: 4.3
|
34 |
+
- task:
|
35 |
+
name: Automatic Speech Recognition
|
36 |
+
type: automatic-speech-recognition
|
37 |
+
dataset:
|
38 |
+
name: LibriSpeech (other)
|
39 |
+
type: librispeech_asr
|
40 |
+
config: other
|
41 |
+
split: test
|
42 |
+
args:
|
43 |
+
language: en
|
44 |
+
metrics:
|
45 |
+
- name: Test WER
|
46 |
+
type: wer
|
47 |
+
value: 9.0
|
48 |
+
---
|
49 |
+
|
50 |
+
|
51 |
+
# S2T-SMALL-LIBRISPEECH-ASR
|
52 |
+
|
53 |
+
`s2t-small-librispeech-asr` is a Speech to Text Transformer (S2T) model trained for automatic speech recognition (ASR).
|
54 |
+
The S2T model was proposed in [this paper](https://arxiv.org/abs/2010.05171) and released in
|
55 |
+
[this repository](https://github.com/pytorch/fairseq/tree/master/examples/speech_to_text)
|
56 |
+
|
57 |
+
|
58 |
+
## Model description
|
59 |
+
|
60 |
+
S2T is an end-to-end sequence-to-sequence transformer model. It is trained with standard
|
61 |
+
autoregressive cross-entropy loss and generates the transcripts autoregressively.
|
62 |
+
|
63 |
+
## Intended uses & limitations
|
64 |
+
|
65 |
+
This model can be used for end-to-end speech recognition (ASR).
|
66 |
+
See the [model hub](https://huggingface.co/models?filter=speech_to_text) to look for other S2T checkpoints.
|
67 |
+
|
68 |
+
|
69 |
+
### How to use
|
70 |
+
|
71 |
+
As this a standard sequence to sequence transformer model, you can use the `generate` method to generate the
|
72 |
+
transcripts by passing the speech features to the model.
|
73 |
+
|
74 |
+
*Note: The `Speech2TextProcessor` object uses [torchaudio](https://github.com/pytorch/audio) to extract the
|
75 |
+
filter bank features. Make sure to install the `torchaudio` package before running this example.*
|
76 |
+
|
77 |
+
*Note: The feature extractor depends on [torchaudio](https://github.com/pytorch/audio) and the tokenizer depends on [sentencepiece](https://github.com/google/sentencepiece)
|
78 |
+
so be sure to install those packages before running the examples.*
|
79 |
+
|
80 |
+
You could either install those as extra speech dependancies with
|
81 |
+
`pip install transformers"[speech, sentencepiece]"` or install the packages seperatly
|
82 |
+
with `pip install torchaudio sentencepiece`.
|
83 |
+
|
84 |
+
|
85 |
+
```python
|
86 |
+
import torch
|
87 |
+
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration
|
88 |
+
from datasets import load_dataset
|
89 |
+
|
90 |
+
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr")
|
91 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr")
|
92 |
+
|
93 |
+
ds = load_dataset(
|
94 |
+
"patrickvonplaten/librispeech_asr_dummy",
|
95 |
+
"clean",
|
96 |
+
split="validation"
|
97 |
+
)
|
98 |
+
|
99 |
+
input_features = processor(
|
100 |
+
ds[0]["audio"]["array"],
|
101 |
+
sampling_rate=16_000,
|
102 |
+
return_tensors="pt"
|
103 |
+
).input_features # Batch size 1
|
104 |
+
generated_ids = model.generate(input_ids=input_features)
|
105 |
+
|
106 |
+
transcription = processor.batch_decode(generated_ids)
|
107 |
+
```
|
108 |
+
|
109 |
+
#### Evaluation on LibriSpeech Test
|
110 |
+
|
111 |
+
The following script shows how to evaluate this model on the [LibriSpeech](https://huggingface.co/datasets/librispeech_asr)
|
112 |
+
*"clean"* and *"other"* test dataset.
|
113 |
+
|
114 |
+
```python
|
115 |
+
from datasets import load_dataset, load_metric
|
116 |
+
from transformers import Speech2TextForConditionalGeneration, Speech2TextProcessor
|
117 |
+
|
118 |
+
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test") # change to "other" for other test dataset
|
119 |
+
wer = load_metric("wer")
|
120 |
+
|
121 |
+
model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-small-librispeech-asr").to("cuda")
|
122 |
+
processor = Speech2TextProcessor.from_pretrained("facebook/s2t-small-librispeech-asr", do_upper_case=True)
|
123 |
+
|
124 |
+
librispeech_eval = librispeech_eval.map(map_to_array)
|
125 |
+
|
126 |
+
def map_to_pred(batch):
|
127 |
+
features = processor(batch["audio"]["array"], sampling_rate=16000, padding=True, return_tensors="pt")
|
128 |
+
input_features = features.input_features.to("cuda")
|
129 |
+
attention_mask = features.attention_mask.to("cuda")
|
130 |
+
|
131 |
+
gen_tokens = model.generate(input_ids=input_features, attention_mask=attention_mask)
|
132 |
+
batch["transcription"] = processor.batch_decode(gen_tokens, skip_special_tokens=True)
|
133 |
+
return batch
|
134 |
+
|
135 |
+
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["speech"])
|
136 |
+
|
137 |
+
print("WER:", wer(predictions=result["transcription"], references=result["text"]))
|
138 |
+
```
|
139 |
+
|
140 |
+
*Result (WER)*:
|
141 |
+
|
142 |
+
| "clean" | "other" |
|
143 |
+
|:-------:|:-------:|
|
144 |
+
| 4.3 | 9.0 |
|
145 |
+
|
146 |
+
|
147 |
+
|
148 |
+
## Training data
|
149 |
+
|
150 |
+
The S2T-SMALL-LIBRISPEECH-ASR is trained on [LibriSpeech ASR Corpus](https://www.openslr.org/12), a dataset consisting of
|
151 |
+
approximately 1000 hours of 16kHz read English speech.
|
152 |
+
|
153 |
+
|
154 |
+
## Training procedure
|
155 |
+
|
156 |
+
### Preprocessing
|
157 |
+
|
158 |
+
The speech data is pre-processed by extracting Kaldi-compliant 80-channel log mel-filter bank features automatically from
|
159 |
+
WAV/FLAC audio files via PyKaldi or torchaudio. Further utterance-level CMVN (cepstral mean and variance normalization)
|
160 |
+
is applied to each example.
|
161 |
+
|
162 |
+
The texts are lowercased and tokenized using SentencePiece and a vocabulary size of 10,000.
|
163 |
+
|
164 |
+
|
165 |
+
### Training
|
166 |
+
|
167 |
+
The model is trained with standard autoregressive cross-entropy loss and using [SpecAugment](https://arxiv.org/abs/1904.08779).
|
168 |
+
The encoder receives speech features, and the decoder generates the transcripts autoregressively.
|
169 |
+
|
170 |
+
|
171 |
+
### BibTeX entry and citation info
|
172 |
+
|
173 |
+
```bibtex
|
174 |
+
@inproceedings{wang2020fairseqs2t,
|
175 |
+
title = {fairseq S2T: Fast Speech-to-Text Modeling with fairseq},
|
176 |
+
author = {Changhan Wang and Yun Tang and Xutai Ma and Anne Wu and Dmytro Okhonko and Juan Pino},
|
177 |
+
booktitle = {Proceedings of the 2020 Conference of the Asian Chapter of the Association for Computational Linguistics (AACL): System Demonstrations},
|
178 |
+
year = {2020},
|
179 |
+
}
|
180 |
+
|
181 |
+
```
|