Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-unit1.zip +3 -0
- ppo-LunarLander-v2-unit1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-unit1/data +95 -0
- ppo-LunarLander-v2-unit1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-unit1/policy.pth +3 -0
- ppo-LunarLander-v2-unit1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-unit1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.09 +/- 20.55
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd607057e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd607057ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd607057f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd60705b040>", "_build": "<function ActorCriticPolicy._build at 0x7fd60705b0d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd60705b160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd60705b1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd60705b280>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd60705b310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd60705b3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd60705b430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd60705b4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd607053990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676484681208429933, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaKr7ub728/PZMKPS2Gw76aOzO93pqtPAAAAAAAAAAAzSxqumQbsz9BFjm9qhSLvn0Whzoi9SU8AAAAAAAAAABmHdy9T8ATP/jt8D0eGam+vcNFvRE2Dz0AAAAAAAAAAJrEYj7UsgG9Q/LJuno4dTnY5mW+W7gHOgAAgD8AAIA/zT7FvUDVsz/Lhia/rEFDvpL8abyYbyq+AAAAAAAAAADz8LI9cW08uXdWhzpnTQA2MMg/O3o1oLkAAIA/AACAP80m8DxhSqM74gckPd+o472nd3A91rjVvgAAAAAAAIA/muLnvYFGlD+ZSA6/EQMFv1YFz72ayW2+AAAAAAAAAADNAp68UpD1uVvnbrj3hLwyQXrGuoMpjDcAAIA/AACAP1qmxb36XH0/CltTvj7w9r7ypjq+UY00vQAAAAAAAAAAZo7vO4xyYj8YiUS72THpvg/0A71VSjM8AAAAAAAAAABN5B4+4ptoP6mxmz6ctuO+PccBPjaTrD0AAAAAAAAAAHoJEb6rbiA/Mt3CPcYstr6MOCa97oi4PQAAAAAAAAAAmnKevOHqhLpelpCzJuWKrHaj/LodYLwzAACAPwAAgD+a7qg8w3UdvAUcDr75dx89NpF/PeoGAb4AAIA/AACAPwCniz3hWKG6xvLlNCLBEzAvxZY67yVAtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw2LUtXa3bkCUhpRSlIwBbJRL/4wBdJRHQJPXT4WUKRd1fZQoaAZoCWgPQwjZk8Dm3IVxQJSGlFKUaBVL62gWR0CT16PS2H+IdX2UKGgGaAloD0MIuD6sN+rHbECUhpRSlGgVTTsBaBZHQJPXy4pc5bR1fZQoaAZoCWgPQwip91ROu0txQJSGlFKUaBVL5GgWR0CT2AJzDGcXdX2UKGgGaAloD0MILJrOTgaIbUCUhpRSlGgVTSABaBZHQJPYkiqyWzF1fZQoaAZoCWgPQwgLX1/r0vNtQJSGlFKUaBVNEgFoFkdAk9jRCIDYAnV9lChoBmgJaA9DCDbOpiMAeW5AlIaUUpRoFU0dAWgWR0CT2TmAskIHdX2UKGgGaAloD0MIc9u+R/1pcECUhpRSlGgVTSMBaBZHQJPZbkdV/+d1fZQoaAZoCWgPQwjM1CR4g6pxQJSGlFKUaBVNAgFoFkdAk9qTj/+85HV9lChoBmgJaA9DCFxxcVTuEHJAlIaUUpRoFU0IAWgWR0CT26UYsNDudX2UKGgGaAloD0MIM/rRcIq8cUCUhpRSlGgVS/9oFkdAk9u/va11GXV9lChoBmgJaA9DCIFfI0nQF3FAlIaUUpRoFU0/AWgWR0CT3g4zabnYdX2UKGgGaAloD0MIVHJO7CHJcUCUhpRSlGgVS/poFkdAk957qlgtvnV9lChoBmgJaA9DCMb5m1CIjWxAlIaUUpRoFU0YAWgWR0CT3wOGj9GadX2UKGgGaAloD0MIhH8RNGYkcECUhpRSlGgVTQIBaBZHQJPge7OE/Sp1fZQoaAZoCWgPQwhEUaBPZPRvQJSGlFKUaBVNCgFoFkdAk+NilzltCXV9lChoBmgJaA9DCPwcHy1ObW5AlIaUUpRoFU0AAWgWR0CT4/FR51NhdX2UKGgGaAloD0MIU3WPbG4BcUCUhpRSlGgVTQYBaBZHQJPj8i7kGRp1fZQoaAZoCWgPQwgO2UC6mCFwQJSGlFKUaBVNLgFoFkdAk+R/a+N96XV9lChoBmgJaA9DCNdQai8iv3FAlIaUUpRoFU0lAWgWR0CT5IzOHFgldX2UKGgGaAloD0MIbjSAt8Dgb0CUhpRSlGgVTTABaBZHQJPk6HXVbzN1fZQoaAZoCWgPQwgGZoUiHR5yQJSGlFKUaBVNCwFoFkdAk+U+aScLB3V9lChoBmgJaA9DCOurqwJ1zHNAlIaUUpRoFU08AWgWR0CT5xgi/wiJdX2UKGgGaAloD0MItCH/zGB4cECUhpRSlGgVS/1oFkdAk+c6iGnGbXV9lChoBmgJaA9DCB5ssdtnhG9AlIaUUpRoFU0bAWgWR0CT51iAUcn3dX2UKGgGaAloD0MI7dKGw5LGckCUhpRSlGgVTQQBaBZHQJPnoeyRjjJ1fZQoaAZoCWgPQwjPLt/6sHVxQJSGlFKUaBVN1wFoFkdAk+iQM+eOGXV9lChoBmgJaA9DCEiKyLDKq3FAlIaUUpRoFUvyaBZHQJPpF71Iy0t1fZQoaAZoCWgPQwhxkXu6eotyQJSGlFKUaBVNDAFoFkdAk+pJxR2r4nV9lChoBmgJaA9DCCZV203wBG9AlIaUUpRoFU0fAWgWR0CT6x+az/p/dX2UKGgGaAloD0MI7bYLzXXKckCUhpRSlGgVTTYBaBZHQJPs33IuGsV1fZQoaAZoCWgPQwiKraBpCYptQJSGlFKUaBVNGAFoFkdAk+3iHRCx/3V9lChoBmgJaA9DCImYEkl0u3BAlIaUUpRoFU0VAWgWR0CT7igNPP9ldX2UKGgGaAloD0MI4c/wZo0tcECUhpRSlGgVTRABaBZHQJPuY08/2TR1fZQoaAZoCWgPQwjp1mt60LNsQJSGlFKUaBVNHQFoFkdAk+519Wp6yHV9lChoBmgJaA9DCEPmyqDazW9AlIaUUpRoFU0ZAWgWR0CT7una37UHdX2UKGgGaAloD0MIWrxYGCIOckCUhpRSlGgVTRwBaBZHQJPvPLB9Cu51fZQoaAZoCWgPQwiFCDiEqoRvQJSGlFKUaBVNBgFoFkdAk+/taEBbOnV9lChoBmgJaA9DCMxh9x3DoW1AlIaUUpRoFU1CAWgWR0CT7/ad+XqrdX2UKGgGaAloD0MIwOyePCxrb0CUhpRSlGgVTQYBaBZHQJPwBepn6Ed1fZQoaAZoCWgPQwjnjCjtDfduQJSGlFKUaBVNDgFoFkdAk/B86BAfMnV9lChoBmgJaA9DCPrS25+Le3JAlIaUUpRoFU01AWgWR0CT8V4ffXPJdX2UKGgGaAloD0MIZohjXRwxcECUhpRSlGgVTRYBaBZHQJPxwnSfDk51fZQoaAZoCWgPQwinWguz0M9yQJSGlFKUaBVNNgFoFkdAk/I6m8/Uv3V9lChoBmgJaA9DCNsxdVe2LnNAlIaUUpRoFU0jAWgWR0CUB2YK6WgOdX2UKGgGaAloD0MI26Z4XJRHcECUhpRSlGgVTV4BaBZHQJQIYpWmxdJ1fZQoaAZoCWgPQwggQlw5+49xQJSGlFKUaBVNFgFoFkdAlAjWac7Qs3V9lChoBmgJaA9DCEjBU8iVcG9AlIaUUpRoFU0JAWgWR0CUCd/i5uqFdX2UKGgGaAloD0MIQL6ECk4RcECUhpRSlGgVS/1oFkdAlAoFgMMI/3V9lChoBmgJaA9DCGgj100pMnBAlIaUUpRoFU0EAWgWR0CUCqgxagVXdX2UKGgGaAloD0MIObaeIVxVcECUhpRSlGgVTTABaBZHQJQK79YOlO51fZQoaAZoCWgPQwhi2cwh6QRwQJSGlFKUaBVNPQFoFkdAlAsnd9Dx9XV9lChoBmgJaA9DCIbnpWIj1nFAlIaUUpRoFUv+aBZHQJQLMA+6iCd1fZQoaAZoCWgPQwhB176AHpFyQJSGlFKUaBVNGQFoFkdAlAwjmfXf7HV9lChoBmgJaA9DCNfDl4niC3JAlIaUUpRoFU1QAWgWR0CUDDoqTbFkdX2UKGgGaAloD0MIcF0xI7z3b0CUhpRSlGgVTSEBaBZHQJQMUT37DVJ1fZQoaAZoCWgPQwiPG3433aZzQJSGlFKUaBVNGgFoFkdAlAylzQu27XV9lChoBmgJaA9DCL+36c8+iHFAlIaUUpRoFU0XAWgWR0CUDWu+AVfvdX2UKGgGaAloD0MIJuKt8+8Xb0CUhpRSlGgVS/loFkdAlA1+9rXUY3V9lChoBmgJaA9DCGDMlqxKpHBAlIaUUpRoFU0yAWgWR0CUDnKhcqvvdX2UKGgGaAloD0MI7dPxmIEyb0CUhpRSlGgVTQ0BaBZHQJQQl0Rvm5l1fZQoaAZoCWgPQwhOuFfmrbNQQJSGlFKUaBVL2GgWR0CUEY9Ujs2OdX2UKGgGaAloD0MIJ02Dojluc0CUhpRSlGgVTUUBaBZHQJQRlqASWZ91fZQoaAZoCWgPQwj/XDRkPAhwQJSGlFKUaBVNEgFoFkdAlBKjWwu/UXV9lChoBmgJaA9DCO86G/KPiHJAlIaUUpRoFU0eAWgWR0CUEwiD/VAidX2UKGgGaAloD0MIkC42rRRHcECUhpRSlGgVTUEBaBZHQJQTWJO32El1fZQoaAZoCWgPQwjXa3pQ0G9wQJSGlFKUaBVNEAFoFkdAlBNx2B8QZnV9lChoBmgJaA9DCBkBFY4g1nFAlIaUUpRoFUv0aBZHQJQUJ5eJHiF1fZQoaAZoCWgPQwjRPesabW1wQJSGlFKUaBVNHgFoFkdAlBSlt8/lhnV9lChoBmgJaA9DCHxHjQmxC3FAlIaUUpRoFU0EAWgWR0CUFPGFzuF6dX2UKGgGaAloD0MI5IIz+DvVcECUhpRSlGgVTTwBaBZHQJQVpd6cAip1fZQoaAZoCWgPQwg9ZMqH4N9xQJSGlFKUaBVNKQFoFkdAlBZ+AiFCcHV9lChoBmgJaA9DCOgwX17Aa3JAlIaUUpRoFU0YAWgWR0CUF3lP8AJcdX2UKGgGaAloD0MICrlSzwKhbkCUhpRSlGgVTSMBaBZHQJQX/V6NVBF1fZQoaAZoCWgPQwjekEYFztZwQJSGlFKUaBVNagFoFkdAlBmY86mwaHV9lChoBmgJaA9DCEbu6eoOD3BAlIaUUpRoFU0lAWgWR0CUGaiHZbpvdX2UKGgGaAloD0MIgem0bgONbkCUhpRSlGgVTSABaBZHQJQeFosZpBZ1fZQoaAZoCWgPQwgFNXwL63ZwQJSGlFKUaBVL52gWR0CUHq/bTMJQdX2UKGgGaAloD0MIArnEkYeUckCUhpRSlGgVTVcBaBZHQJQfmCkGiYd1fZQoaAZoCWgPQwg5XoHoieFxQJSGlFKUaBVNGQFoFkdAlB/EMCtA9nV9lChoBmgJaA9DCF5ortNI63BAlIaUUpRoFU0ZAWgWR0CUH95VwPy1dX2UKGgGaAloD0MIFCS2uwfcbUCUhpRSlGgVTS8BaBZHQJQgLVf/m1Z1fZQoaAZoCWgPQwiuuaP/peNxQJSGlFKUaBVNIQFoFkdAlCEU1l5GBnV9lChoBmgJaA9DCF4wuOZOU3JAlIaUUpRoFU1CAWgWR0CUIXxI8QqadX2UKGgGaAloD0MIgLirV1EBcECUhpRSlGgVTSwBaBZHQJQicrQPZqV1fZQoaAZoCWgPQwgVAySawP1xQJSGlFKUaBVNJQFoFkdAlCLs32mHg3V9lChoBmgJaA9DCPGg2XVvoHBAlIaUUpRoFU0QAWgWR0CUIvyup0fYdX2UKGgGaAloD0MIbqetEUERcUCUhpRSlGgVTQIBaBZHQJQje/O+qR51fZQoaAZoCWgPQwgAN4sXC5dvQJSGlFKUaBVL+WgWR0CUI6kmQbMpdX2UKGgGaAloD0MIwy0fSckWb0CUhpRSlGgVS/5oFkdAlCVnMpw0f3V9lChoBmgJaA9DCL1tpkJ84nJAlIaUUpRoFU0FAWgWR0CUJcFTNt65dX2UKGgGaAloD0MIFmh3SLGmckCUhpRSlGgVTRQBaBZHQJQpf6guh9N1fZQoaAZoCWgPQwjuQ95ydZZxQJSGlFKUaBVNBAFoFkdAlCoZdB0IT3V9lChoBmgJaA9DCG1VEtkHYHFAlIaUUpRoFU0OAWgWR0CUKrL+xW1ddX2UKGgGaAloD0MI1lbsL7sqbkCUhpRSlGgVTT0BaBZHQJQregyuZCx1fZQoaAZoCWgPQwizBu+rMrRwQJSGlFKUaBVNLgFoFkdAlCuF7MPjGXV9lChoBmgJaA9DCNkG7kBdgHBAlIaUUpRoFU0rAWgWR0CUK4YvWYnfdX2UKGgGaAloD0MIkL5J0+DKcECUhpRSlGgVTSABaBZHQJQsYAxSHdp1fZQoaAZoCWgPQwiSrpl8sz5vQJSGlFKUaBVNBAFoFkdAlCyLzK9wm3V9lChoBmgJaA9DCHHl7J3RYW1AlIaUUpRoFU0AAWgWR0CULPKoQ4CIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-unit1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe602f99cac5549895bfcaa8bc67428fa4879cfe29082bacd498267462219de8
|
3 |
+
size 147404
|
ppo-LunarLander-v2-unit1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2-unit1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd607057e50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd607057ee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd607057f70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd60705b040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd60705b0d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd60705b160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd60705b1f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd60705b280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd60705b310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd60705b3a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd60705b430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd60705b4c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd607053990>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676484681208429933,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaKr7ub728/PZMKPS2Gw76aOzO93pqtPAAAAAAAAAAAzSxqumQbsz9BFjm9qhSLvn0Whzoi9SU8AAAAAAAAAABmHdy9T8ATP/jt8D0eGam+vcNFvRE2Dz0AAAAAAAAAAJrEYj7UsgG9Q/LJuno4dTnY5mW+W7gHOgAAgD8AAIA/zT7FvUDVsz/Lhia/rEFDvpL8abyYbyq+AAAAAAAAAADz8LI9cW08uXdWhzpnTQA2MMg/O3o1oLkAAIA/AACAP80m8DxhSqM74gckPd+o472nd3A91rjVvgAAAAAAAIA/muLnvYFGlD+ZSA6/EQMFv1YFz72ayW2+AAAAAAAAAADNAp68UpD1uVvnbrj3hLwyQXrGuoMpjDcAAIA/AACAP1qmxb36XH0/CltTvj7w9r7ypjq+UY00vQAAAAAAAAAAZo7vO4xyYj8YiUS72THpvg/0A71VSjM8AAAAAAAAAABN5B4+4ptoP6mxmz6ctuO+PccBPjaTrD0AAAAAAAAAAHoJEb6rbiA/Mt3CPcYstr6MOCa97oi4PQAAAAAAAAAAmnKevOHqhLpelpCzJuWKrHaj/LodYLwzAACAPwAAgD+a7qg8w3UdvAUcDr75dx89NpF/PeoGAb4AAIA/AACAPwCniz3hWKG6xvLlNCLBEzAvxZY67yVAtAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIw2LUtXa3bkCUhpRSlIwBbJRL/4wBdJRHQJPXT4WUKRd1fZQoaAZoCWgPQwjZk8Dm3IVxQJSGlFKUaBVL62gWR0CT16PS2H+IdX2UKGgGaAloD0MIuD6sN+rHbECUhpRSlGgVTTsBaBZHQJPXy4pc5bR1fZQoaAZoCWgPQwip91ROu0txQJSGlFKUaBVL5GgWR0CT2AJzDGcXdX2UKGgGaAloD0MILJrOTgaIbUCUhpRSlGgVTSABaBZHQJPYkiqyWzF1fZQoaAZoCWgPQwgLX1/r0vNtQJSGlFKUaBVNEgFoFkdAk9jRCIDYAnV9lChoBmgJaA9DCDbOpiMAeW5AlIaUUpRoFU0dAWgWR0CT2TmAskIHdX2UKGgGaAloD0MIc9u+R/1pcECUhpRSlGgVTSMBaBZHQJPZbkdV/+d1fZQoaAZoCWgPQwjM1CR4g6pxQJSGlFKUaBVNAgFoFkdAk9qTj/+85HV9lChoBmgJaA9DCFxxcVTuEHJAlIaUUpRoFU0IAWgWR0CT26UYsNDudX2UKGgGaAloD0MIM/rRcIq8cUCUhpRSlGgVS/9oFkdAk9u/va11GXV9lChoBmgJaA9DCIFfI0nQF3FAlIaUUpRoFU0/AWgWR0CT3g4zabnYdX2UKGgGaAloD0MIVHJO7CHJcUCUhpRSlGgVS/poFkdAk957qlgtvnV9lChoBmgJaA9DCMb5m1CIjWxAlIaUUpRoFU0YAWgWR0CT3wOGj9GadX2UKGgGaAloD0MIhH8RNGYkcECUhpRSlGgVTQIBaBZHQJPge7OE/Sp1fZQoaAZoCWgPQwhEUaBPZPRvQJSGlFKUaBVNCgFoFkdAk+NilzltCXV9lChoBmgJaA9DCPwcHy1ObW5AlIaUUpRoFU0AAWgWR0CT4/FR51NhdX2UKGgGaAloD0MIU3WPbG4BcUCUhpRSlGgVTQYBaBZHQJPj8i7kGRp1fZQoaAZoCWgPQwgO2UC6mCFwQJSGlFKUaBVNLgFoFkdAk+R/a+N96XV9lChoBmgJaA9DCNdQai8iv3FAlIaUUpRoFU0lAWgWR0CT5IzOHFgldX2UKGgGaAloD0MIbjSAt8Dgb0CUhpRSlGgVTTABaBZHQJPk6HXVbzN1fZQoaAZoCWgPQwgGZoUiHR5yQJSGlFKUaBVNCwFoFkdAk+U+aScLB3V9lChoBmgJaA9DCOurqwJ1zHNAlIaUUpRoFU08AWgWR0CT5xgi/wiJdX2UKGgGaAloD0MItCH/zGB4cECUhpRSlGgVS/1oFkdAk+c6iGnGbXV9lChoBmgJaA9DCB5ssdtnhG9AlIaUUpRoFU0bAWgWR0CT51iAUcn3dX2UKGgGaAloD0MI7dKGw5LGckCUhpRSlGgVTQQBaBZHQJPnoeyRjjJ1fZQoaAZoCWgPQwjPLt/6sHVxQJSGlFKUaBVN1wFoFkdAk+iQM+eOGXV9lChoBmgJaA9DCEiKyLDKq3FAlIaUUpRoFUvyaBZHQJPpF71Iy0t1fZQoaAZoCWgPQwhxkXu6eotyQJSGlFKUaBVNDAFoFkdAk+pJxR2r4nV9lChoBmgJaA9DCCZV203wBG9AlIaUUpRoFU0fAWgWR0CT6x+az/p/dX2UKGgGaAloD0MI7bYLzXXKckCUhpRSlGgVTTYBaBZHQJPs33IuGsV1fZQoaAZoCWgPQwiKraBpCYptQJSGlFKUaBVNGAFoFkdAk+3iHRCx/3V9lChoBmgJaA9DCImYEkl0u3BAlIaUUpRoFU0VAWgWR0CT7igNPP9ldX2UKGgGaAloD0MI4c/wZo0tcECUhpRSlGgVTRABaBZHQJPuY08/2TR1fZQoaAZoCWgPQwjp1mt60LNsQJSGlFKUaBVNHQFoFkdAk+519Wp6yHV9lChoBmgJaA9DCEPmyqDazW9AlIaUUpRoFU0ZAWgWR0CT7una37UHdX2UKGgGaAloD0MIWrxYGCIOckCUhpRSlGgVTRwBaBZHQJPvPLB9Cu51fZQoaAZoCWgPQwiFCDiEqoRvQJSGlFKUaBVNBgFoFkdAk+/taEBbOnV9lChoBmgJaA9DCMxh9x3DoW1AlIaUUpRoFU1CAWgWR0CT7/ad+XqrdX2UKGgGaAloD0MIwOyePCxrb0CUhpRSlGgVTQYBaBZHQJPwBepn6Ed1fZQoaAZoCWgPQwjnjCjtDfduQJSGlFKUaBVNDgFoFkdAk/B86BAfMnV9lChoBmgJaA9DCPrS25+Le3JAlIaUUpRoFU01AWgWR0CT8V4ffXPJdX2UKGgGaAloD0MIZohjXRwxcECUhpRSlGgVTRYBaBZHQJPxwnSfDk51fZQoaAZoCWgPQwinWguz0M9yQJSGlFKUaBVNNgFoFkdAk/I6m8/Uv3V9lChoBmgJaA9DCNsxdVe2LnNAlIaUUpRoFU0jAWgWR0CUB2YK6WgOdX2UKGgGaAloD0MI26Z4XJRHcECUhpRSlGgVTV4BaBZHQJQIYpWmxdJ1fZQoaAZoCWgPQwggQlw5+49xQJSGlFKUaBVNFgFoFkdAlAjWac7Qs3V9lChoBmgJaA9DCEjBU8iVcG9AlIaUUpRoFU0JAWgWR0CUCd/i5uqFdX2UKGgGaAloD0MIQL6ECk4RcECUhpRSlGgVS/1oFkdAlAoFgMMI/3V9lChoBmgJaA9DCGgj100pMnBAlIaUUpRoFU0EAWgWR0CUCqgxagVXdX2UKGgGaAloD0MIObaeIVxVcECUhpRSlGgVTTABaBZHQJQK79YOlO51fZQoaAZoCWgPQwhi2cwh6QRwQJSGlFKUaBVNPQFoFkdAlAsnd9Dx9XV9lChoBmgJaA9DCIbnpWIj1nFAlIaUUpRoFUv+aBZHQJQLMA+6iCd1fZQoaAZoCWgPQwhB176AHpFyQJSGlFKUaBVNGQFoFkdAlAwjmfXf7HV9lChoBmgJaA9DCNfDl4niC3JAlIaUUpRoFU1QAWgWR0CUDDoqTbFkdX2UKGgGaAloD0MIcF0xI7z3b0CUhpRSlGgVTSEBaBZHQJQMUT37DVJ1fZQoaAZoCWgPQwiPG3433aZzQJSGlFKUaBVNGgFoFkdAlAylzQu27XV9lChoBmgJaA9DCL+36c8+iHFAlIaUUpRoFU0XAWgWR0CUDWu+AVfvdX2UKGgGaAloD0MIJuKt8+8Xb0CUhpRSlGgVS/loFkdAlA1+9rXUY3V9lChoBmgJaA9DCGDMlqxKpHBAlIaUUpRoFU0yAWgWR0CUDnKhcqvvdX2UKGgGaAloD0MI7dPxmIEyb0CUhpRSlGgVTQ0BaBZHQJQQl0Rvm5l1fZQoaAZoCWgPQwhOuFfmrbNQQJSGlFKUaBVL2GgWR0CUEY9Ujs2OdX2UKGgGaAloD0MIJ02Dojluc0CUhpRSlGgVTUUBaBZHQJQRlqASWZ91fZQoaAZoCWgPQwj/XDRkPAhwQJSGlFKUaBVNEgFoFkdAlBKjWwu/UXV9lChoBmgJaA9DCO86G/KPiHJAlIaUUpRoFU0eAWgWR0CUEwiD/VAidX2UKGgGaAloD0MIkC42rRRHcECUhpRSlGgVTUEBaBZHQJQTWJO32El1fZQoaAZoCWgPQwjXa3pQ0G9wQJSGlFKUaBVNEAFoFkdAlBNx2B8QZnV9lChoBmgJaA9DCBkBFY4g1nFAlIaUUpRoFUv0aBZHQJQUJ5eJHiF1fZQoaAZoCWgPQwjRPesabW1wQJSGlFKUaBVNHgFoFkdAlBSlt8/lhnV9lChoBmgJaA9DCHxHjQmxC3FAlIaUUpRoFU0EAWgWR0CUFPGFzuF6dX2UKGgGaAloD0MI5IIz+DvVcECUhpRSlGgVTTwBaBZHQJQVpd6cAip1fZQoaAZoCWgPQwg9ZMqH4N9xQJSGlFKUaBVNKQFoFkdAlBZ+AiFCcHV9lChoBmgJaA9DCOgwX17Aa3JAlIaUUpRoFU0YAWgWR0CUF3lP8AJcdX2UKGgGaAloD0MICrlSzwKhbkCUhpRSlGgVTSMBaBZHQJQX/V6NVBF1fZQoaAZoCWgPQwjekEYFztZwQJSGlFKUaBVNagFoFkdAlBmY86mwaHV9lChoBmgJaA9DCEbu6eoOD3BAlIaUUpRoFU0lAWgWR0CUGaiHZbpvdX2UKGgGaAloD0MIgem0bgONbkCUhpRSlGgVTSABaBZHQJQeFosZpBZ1fZQoaAZoCWgPQwgFNXwL63ZwQJSGlFKUaBVL52gWR0CUHq/bTMJQdX2UKGgGaAloD0MIArnEkYeUckCUhpRSlGgVTVcBaBZHQJQfmCkGiYd1fZQoaAZoCWgPQwg5XoHoieFxQJSGlFKUaBVNGQFoFkdAlB/EMCtA9nV9lChoBmgJaA9DCF5ortNI63BAlIaUUpRoFU0ZAWgWR0CUH95VwPy1dX2UKGgGaAloD0MIFCS2uwfcbUCUhpRSlGgVTS8BaBZHQJQgLVf/m1Z1fZQoaAZoCWgPQwiuuaP/peNxQJSGlFKUaBVNIQFoFkdAlCEU1l5GBnV9lChoBmgJaA9DCF4wuOZOU3JAlIaUUpRoFU1CAWgWR0CUIXxI8QqadX2UKGgGaAloD0MIgLirV1EBcECUhpRSlGgVTSwBaBZHQJQicrQPZqV1fZQoaAZoCWgPQwgVAySawP1xQJSGlFKUaBVNJQFoFkdAlCLs32mHg3V9lChoBmgJaA9DCPGg2XVvoHBAlIaUUpRoFU0QAWgWR0CUIvyup0fYdX2UKGgGaAloD0MIbqetEUERcUCUhpRSlGgVTQIBaBZHQJQje/O+qR51fZQoaAZoCWgPQwgAN4sXC5dvQJSGlFKUaBVL+WgWR0CUI6kmQbMpdX2UKGgGaAloD0MIwy0fSckWb0CUhpRSlGgVS/5oFkdAlCVnMpw0f3V9lChoBmgJaA9DCL1tpkJ84nJAlIaUUpRoFU0FAWgWR0CUJcFTNt65dX2UKGgGaAloD0MIFmh3SLGmckCUhpRSlGgVTRQBaBZHQJQpf6guh9N1fZQoaAZoCWgPQwjuQ95ydZZxQJSGlFKUaBVNBAFoFkdAlCoZdB0IT3V9lChoBmgJaA9DCG1VEtkHYHFAlIaUUpRoFU0OAWgWR0CUKrL+xW1ddX2UKGgGaAloD0MI1lbsL7sqbkCUhpRSlGgVTT0BaBZHQJQregyuZCx1fZQoaAZoCWgPQwizBu+rMrRwQJSGlFKUaBVNLgFoFkdAlCuF7MPjGXV9lChoBmgJaA9DCNkG7kBdgHBAlIaUUpRoFU0rAWgWR0CUK4YvWYnfdX2UKGgGaAloD0MIkL5J0+DKcECUhpRSlGgVTSABaBZHQJQsYAxSHdp1fZQoaAZoCWgPQwiSrpl8sz5vQJSGlFKUaBVNBAFoFkdAlCyLzK9wm3V9lChoBmgJaA9DCHHl7J3RYW1AlIaUUpRoFU0AAWgWR0CULPKoQ4CIdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 248,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2-unit1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4b0d86689ee4963bf5e8b7e694f0254903ff22a782ef838df9e5934ea1c9ecf
|
3 |
+
size 87929
|
ppo-LunarLander-v2-unit1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7759787b2e1f9bfded5ab81b8b2038ec22570045cb8f64af1cdf24f779b3ca21
|
3 |
+
size 43393
|
ppo-LunarLander-v2-unit1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-unit1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (247 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.08617729838977, "std_reward": 20.55132573443024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T18:32:44.476585"}
|