Clawoo commited on
Commit
c564b72
1 Parent(s): 3f9da66

Upload . with huggingface_hub

Browse files
Files changed (3) hide show
  1. README.md +1 -1
  2. replay.mp4 +2 -2
  3. sf_log.txt +130 -0
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 10.04 +/- 7.32
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 8.70 +/- 3.50
19
  name: mean_reward
20
  verified: false
21
  ---
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:07a65b03fc16c088127de7bfb3a3a27bbd362c39dcf39db122a433b5bca013be
3
- size 18728742
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f4bdfc48feafd86eee93776b66e21c3a0fc347c1c2fd7330ceefbcc3aaf2e20
3
+ size 16299724
sf_log.txt CHANGED
@@ -5767,3 +5767,133 @@ main_loop: 1172.2192
5767
  [2023-02-27 12:43:46,908][00394] Avg episode rewards: #0: 23.544, true rewards: #0: 10.044
5768
  [2023-02-27 12:43:46,909][00394] Avg episode reward: 23.544, avg true_objective: 10.044
5769
  [2023-02-27 12:44:46,898][00394] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5767
  [2023-02-27 12:43:46,908][00394] Avg episode rewards: #0: 23.544, true rewards: #0: 10.044
5768
  [2023-02-27 12:43:46,909][00394] Avg episode reward: 23.544, avg true_objective: 10.044
5769
  [2023-02-27 12:44:46,898][00394] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
5770
+ [2023-02-27 12:44:51,099][00394] The model has been pushed to https://huggingface.co/Clawoo/rl_course_vizdoom_health_gathering_supreme
5771
+ [2023-02-27 12:45:10,860][00394] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
5772
+ [2023-02-27 12:45:10,863][00394] Overriding arg 'num_workers' with value 1 passed from command line
5773
+ [2023-02-27 12:45:10,865][00394] Adding new argument 'no_render'=True that is not in the saved config file!
5774
+ [2023-02-27 12:45:10,868][00394] Adding new argument 'save_video'=True that is not in the saved config file!
5775
+ [2023-02-27 12:45:10,870][00394] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
5776
+ [2023-02-27 12:45:10,871][00394] Adding new argument 'video_name'=None that is not in the saved config file!
5777
+ [2023-02-27 12:45:10,874][00394] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
5778
+ [2023-02-27 12:45:10,875][00394] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
5779
+ [2023-02-27 12:45:10,876][00394] Adding new argument 'push_to_hub'=True that is not in the saved config file!
5780
+ [2023-02-27 12:45:10,878][00394] Adding new argument 'hf_repository'='Clawoo/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
5781
+ [2023-02-27 12:45:10,879][00394] Adding new argument 'policy_index'=0 that is not in the saved config file!
5782
+ [2023-02-27 12:45:10,880][00394] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
5783
+ [2023-02-27 12:45:10,881][00394] Adding new argument 'train_script'=None that is not in the saved config file!
5784
+ [2023-02-27 12:45:10,883][00394] Adding new argument 'enjoy_script'=None that is not in the saved config file!
5785
+ [2023-02-27 12:45:10,884][00394] Using frameskip 1 and render_action_repeat=4 for evaluation
5786
+ [2023-02-27 12:45:10,907][00394] RunningMeanStd input shape: (3, 72, 128)
5787
+ [2023-02-27 12:45:10,910][00394] RunningMeanStd input shape: (1,)
5788
+ [2023-02-27 12:45:10,923][00394] ConvEncoder: input_channels=3
5789
+ [2023-02-27 12:45:10,959][00394] Conv encoder output size: 512
5790
+ [2023-02-27 12:45:10,963][00394] Policy head output size: 512
5791
+ [2023-02-27 12:45:10,981][00394] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000003908_16007168.pth...
5792
+ [2023-02-27 12:45:11,467][00394] Num frames 100...
5793
+ [2023-02-27 12:45:11,597][00394] Num frames 200...
5794
+ [2023-02-27 12:45:11,723][00394] Num frames 300...
5795
+ [2023-02-27 12:45:11,838][00394] Num frames 400...
5796
+ [2023-02-27 12:45:11,955][00394] Num frames 500...
5797
+ [2023-02-27 12:45:12,068][00394] Num frames 600...
5798
+ [2023-02-27 12:45:12,189][00394] Num frames 700...
5799
+ [2023-02-27 12:45:12,316][00394] Num frames 800...
5800
+ [2023-02-27 12:45:12,439][00394] Num frames 900...
5801
+ [2023-02-27 12:45:12,564][00394] Num frames 1000...
5802
+ [2023-02-27 12:45:12,691][00394] Num frames 1100...
5803
+ [2023-02-27 12:45:12,811][00394] Num frames 1200...
5804
+ [2023-02-27 12:45:12,931][00394] Num frames 1300...
5805
+ [2023-02-27 12:45:13,052][00394] Num frames 1400...
5806
+ [2023-02-27 12:45:13,185][00394] Num frames 1500...
5807
+ [2023-02-27 12:45:13,323][00394] Avg episode rewards: #0: 40.680, true rewards: #0: 15.680
5808
+ [2023-02-27 12:45:13,328][00394] Avg episode reward: 40.680, avg true_objective: 15.680
5809
+ [2023-02-27 12:45:13,368][00394] Num frames 1600...
5810
+ [2023-02-27 12:45:13,499][00394] Num frames 1700...
5811
+ [2023-02-27 12:45:13,618][00394] Num frames 1800...
5812
+ [2023-02-27 12:45:13,794][00394] Num frames 1900...
5813
+ [2023-02-27 12:45:13,975][00394] Num frames 2000...
5814
+ [2023-02-27 12:45:14,150][00394] Num frames 2100...
5815
+ [2023-02-27 12:45:14,317][00394] Num frames 2200...
5816
+ [2023-02-27 12:45:14,480][00394] Num frames 2300...
5817
+ [2023-02-27 12:45:14,646][00394] Num frames 2400...
5818
+ [2023-02-27 12:45:14,725][00394] Avg episode rewards: #0: 31.555, true rewards: #0: 12.055
5819
+ [2023-02-27 12:45:14,728][00394] Avg episode reward: 31.555, avg true_objective: 12.055
5820
+ [2023-02-27 12:45:14,885][00394] Num frames 2500...
5821
+ [2023-02-27 12:45:15,061][00394] Num frames 2600...
5822
+ [2023-02-27 12:45:15,223][00394] Num frames 2700...
5823
+ [2023-02-27 12:45:15,384][00394] Num frames 2800...
5824
+ [2023-02-27 12:45:15,547][00394] Num frames 2900...
5825
+ [2023-02-27 12:45:15,713][00394] Avg episode rewards: #0: 24.517, true rewards: #0: 9.850
5826
+ [2023-02-27 12:45:15,716][00394] Avg episode reward: 24.517, avg true_objective: 9.850
5827
+ [2023-02-27 12:45:15,795][00394] Num frames 3000...
5828
+ [2023-02-27 12:45:15,963][00394] Num frames 3100...
5829
+ [2023-02-27 12:45:16,134][00394] Num frames 3200...
5830
+ [2023-02-27 12:45:16,314][00394] Num frames 3300...
5831
+ [2023-02-27 12:45:16,486][00394] Num frames 3400...
5832
+ [2023-02-27 12:45:16,659][00394] Num frames 3500...
5833
+ [2023-02-27 12:45:16,838][00394] Num frames 3600...
5834
+ [2023-02-27 12:45:17,009][00394] Num frames 3700...
5835
+ [2023-02-27 12:45:17,186][00394] Num frames 3800...
5836
+ [2023-02-27 12:45:17,364][00394] Num frames 3900...
5837
+ [2023-02-27 12:45:17,501][00394] Num frames 4000...
5838
+ [2023-02-27 12:45:17,623][00394] Num frames 4100...
5839
+ [2023-02-27 12:45:17,758][00394] Num frames 4200...
5840
+ [2023-02-27 12:45:17,824][00394] Avg episode rewards: #0: 25.768, true rewards: #0: 10.517
5841
+ [2023-02-27 12:45:17,827][00394] Avg episode reward: 25.768, avg true_objective: 10.517
5842
+ [2023-02-27 12:45:17,935][00394] Num frames 4300...
5843
+ [2023-02-27 12:45:18,055][00394] Num frames 4400...
5844
+ [2023-02-27 12:45:18,167][00394] Num frames 4500...
5845
+ [2023-02-27 12:45:18,291][00394] Num frames 4600...
5846
+ [2023-02-27 12:45:18,414][00394] Num frames 4700...
5847
+ [2023-02-27 12:45:18,496][00394] Avg episode rewards: #0: 22.238, true rewards: #0: 9.438
5848
+ [2023-02-27 12:45:18,497][00394] Avg episode reward: 22.238, avg true_objective: 9.438
5849
+ [2023-02-27 12:45:18,603][00394] Num frames 4800...
5850
+ [2023-02-27 12:45:18,748][00394] Num frames 4900...
5851
+ [2023-02-27 12:45:18,871][00394] Num frames 5000...
5852
+ [2023-02-27 12:45:18,995][00394] Num frames 5100...
5853
+ [2023-02-27 12:45:19,117][00394] Num frames 5200...
5854
+ [2023-02-27 12:45:19,235][00394] Num frames 5300...
5855
+ [2023-02-27 12:45:19,362][00394] Num frames 5400...
5856
+ [2023-02-27 12:45:19,447][00394] Avg episode rewards: #0: 20.872, true rewards: #0: 9.038
5857
+ [2023-02-27 12:45:19,449][00394] Avg episode reward: 20.872, avg true_objective: 9.038
5858
+ [2023-02-27 12:45:19,549][00394] Num frames 5500...
5859
+ [2023-02-27 12:45:19,672][00394] Num frames 5600...
5860
+ [2023-02-27 12:45:19,796][00394] Num frames 5700...
5861
+ [2023-02-27 12:45:19,914][00394] Num frames 5800...
5862
+ [2023-02-27 12:45:20,040][00394] Num frames 5900...
5863
+ [2023-02-27 12:45:20,163][00394] Num frames 6000...
5864
+ [2023-02-27 12:45:20,283][00394] Num frames 6100...
5865
+ [2023-02-27 12:45:20,406][00394] Num frames 6200...
5866
+ [2023-02-27 12:45:20,528][00394] Num frames 6300...
5867
+ [2023-02-27 12:45:20,660][00394] Num frames 6400...
5868
+ [2023-02-27 12:45:20,781][00394] Num frames 6500...
5869
+ [2023-02-27 12:45:20,902][00394] Num frames 6600...
5870
+ [2023-02-27 12:45:21,021][00394] Num frames 6700...
5871
+ [2023-02-27 12:45:21,081][00394] Avg episode rewards: #0: 22.433, true rewards: #0: 9.576
5872
+ [2023-02-27 12:45:21,083][00394] Avg episode reward: 22.433, avg true_objective: 9.576
5873
+ [2023-02-27 12:45:21,201][00394] Num frames 6800...
5874
+ [2023-02-27 12:45:21,332][00394] Num frames 6900...
5875
+ [2023-02-27 12:45:21,449][00394] Num frames 7000...
5876
+ [2023-02-27 12:45:21,568][00394] Num frames 7100...
5877
+ [2023-02-27 12:45:21,685][00394] Num frames 7200...
5878
+ [2023-02-27 12:45:21,810][00394] Num frames 7300...
5879
+ [2023-02-27 12:45:21,928][00394] Num frames 7400...
5880
+ [2023-02-27 12:45:22,053][00394] Num frames 7500...
5881
+ [2023-02-27 12:45:22,116][00394] Avg episode rewards: #0: 22.254, true rewards: #0: 9.379
5882
+ [2023-02-27 12:45:22,119][00394] Avg episode reward: 22.254, avg true_objective: 9.379
5883
+ [2023-02-27 12:45:22,244][00394] Num frames 7600...
5884
+ [2023-02-27 12:45:22,366][00394] Num frames 7700...
5885
+ [2023-02-27 12:45:22,483][00394] Num frames 7800...
5886
+ [2023-02-27 12:45:22,607][00394] Num frames 7900...
5887
+ [2023-02-27 12:45:22,735][00394] Num frames 8000...
5888
+ [2023-02-27 12:45:22,860][00394] Avg episode rewards: #0: 20.952, true rewards: #0: 8.952
5889
+ [2023-02-27 12:45:22,862][00394] Avg episode reward: 20.952, avg true_objective: 8.952
5890
+ [2023-02-27 12:45:22,913][00394] Num frames 8100...
5891
+ [2023-02-27 12:45:23,033][00394] Num frames 8200...
5892
+ [2023-02-27 12:45:23,163][00394] Num frames 8300...
5893
+ [2023-02-27 12:45:23,288][00394] Num frames 8400...
5894
+ [2023-02-27 12:45:23,405][00394] Num frames 8500...
5895
+ [2023-02-27 12:45:23,523][00394] Num frames 8600...
5896
+ [2023-02-27 12:45:23,702][00394] Avg episode rewards: #0: 20.097, true rewards: #0: 8.697
5897
+ [2023-02-27 12:45:23,704][00394] Avg episode reward: 20.097, avg true_objective: 8.697
5898
+ [2023-02-27 12:45:23,711][00394] Num frames 8700...
5899
+ [2023-02-27 12:46:17,986][00394] Replay video saved to /content/train_dir/default_experiment/replay.mp4!