--- language: en license: mit tags: - fundus - diabetic retinopathy - classification datasets: - APTOS - EYEPACS - IDRID - DDR library: timm model-index: - name: mobilenetv3_small_100 results: - task: type: image-classification dataset: name: EYEPACS type: EYEPACS metrics: - type: kappa value: 0.7481635808944702 name: Quadratic Kappa - task: type: image-classification dataset: name: IDRID type: IDRID metrics: - type: kappa value: 0.6694897413253784 name: Quadratic Kappa - task: type: image-classification dataset: name: DDR type: DDR metrics: - type: kappa value: 0.7369260787963867 name: Quadratic Kappa --- # Fundus DR Grading [![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com) [![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html) [![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/) ## Description This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.