File size: 1,508 Bytes
3628aa4
13fe0a3
 
3628aa4
13fe0a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628aa4
13fe0a3
 
 
 
 
 
 
 
 
 
3628aa4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language: en
license: mit
tags:
- fundus
- diabetic retinopathy
- classification
datasets:
- APTOS
- EYEPACS
- IDRID
- DDR
library: timm
model-index:
- name: resnet50
  results:
  - task:
      type: image-classification
    dataset:
      name: EYEPACS
      type: EYEPACS
    metrics:
    - type: kappa
      value: 0.7331207990646362
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: IDRID
      type: IDRID
    metrics:
    - type: kappa
      value: 0.6275907754898071
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: DDR
      type: DDR
    metrics:
    - type: kappa
      value: 0.7102091312408447
      name: Quadratic Kappa
---
# Fundus DR Grading

[![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com)
[![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html)
[![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/)

## Description

This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.