File size: 1,550 Bytes
ec0e3c1
fdd2602
 
ec0e3c1
fdd2602
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec0e3c1
fdd2602
 
 
 
 
 
 
 
 
 
ec0e3c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language: en
license: mit
tags:
- fundus
- diabetic retinopathy
- classification
datasets:
- APTOS
- EYEPACS
- IDRID
- DDR
library: timm
model-index:
- name: swinv2_large_window12to16_192to256.ms_in22k_ft_in1k
  results:
  - task:
      type: image-classification
    dataset:
      name: EYEPACS
      type: EYEPACS
    metrics:
    - type: kappa
      value: 0.7938311696052551
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: IDRID
      type: IDRID
    metrics:
    - type: kappa
      value: 0.768999457359314
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: DDR
      type: DDR
    metrics:
    - type: kappa
      value: 0.7947348952293396
      name: Quadratic Kappa
---
# Fundus DR Grading

[![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com)
[![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html)
[![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/)

## Description

This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.