File size: 1,524 Bytes
e73bb45
7d14a9d
 
e73bb45
7d14a9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e73bb45
7d14a9d
 
 
 
 
 
 
 
 
 
e73bb45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language: en
license: mit
tags:
- fundus
- diabetic retinopathy
- classification
datasets:
- APTOS
- EYEPACS
- IDRID
- DDR
library: timm
model-index:
- name: vit_small_patch14_dinov2
  results:
  - task:
      type: image-classification
    dataset:
      name: EYEPACS
      type: EYEPACS
    metrics:
    - type: kappa
      value: 0.7281550168991089
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: IDRID
      type: IDRID
    metrics:
    - type: kappa
      value: 0.7765608429908752
      name: Quadratic Kappa
  - task:
      type: image-classification
    dataset:
      name: DDR
      type: DDR
    metrics:
    - type: kappa
      value: 0.7057451009750366
      name: Quadratic Kappa
---
# Fundus DR Grading

[![Rye](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/rye/main/artwork/badge.json)](https://rye-up.com)
[![PyTorch](https://img.shields.io/badge/PyTorch-ee4c2c?logo=pytorch&logoColor=white)](https://pytorch.org/docs/stable/index.html)
[![Lightning](https://img.shields.io/badge/Lightning-792ee5?logo=lightning&logoColor=white)](https://lightning.ai/docs/pytorch/stable/)

## Description

This project aims to evaluate the performance of different models for the classification of diabetic retinopathy (DR) in fundus images. The reported perfomance metrics are not always consistent in the literature. Our goal is to provide a fair comparison between different models using the same datasets and evaluation protocol.