from itertools import chain from transformers import GitProcessor class GIAProcessor(GitProcessor): def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def _cut_text(self, examples, max_input_size): results = { "input_ids": [], "attention_mask": [] } for i in range(len(examples["input_ids"])): _input_size = len(examples["input_ids"][i]) for j in range(max(1, _input_size // max_input_size)): # skip last if smaller than max_input_size results["input_ids"].append(examples["input_ids"][i][j*max_input_size:(j + 1) * max_input_size]) results["attention_mask"].append(examples["attention_mask"][i][j * max_input_size:(j + 1) * max_input_size]) return results def __call__(self, examples, max_input_size, return_tensors=None, **kwargs): if "text" in examples and not "images" in examples: encoded_text = self.tokenizer(examples["text"], return_tensors=return_tensors, max_length=max_input_size, truncation=False, padding="max_length") encoding = self._cut_text(encoded_text, 1000) elif "text" in examples and "images" in examples: encoding = super().__call__(examples["text"], examples["images"], return_tensors, **kwargs) return encoding def batch_decode(self, *args, **kwargs): return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["input_ids", "attention_mask", "pixel_values"] GIAProcessor.register_for_auto_class("AutoProcessor")