File size: 2,519 Bytes
8b9e9fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: bsd-3-clause
base_model: ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan-finetuned-gtzan

This model is a fine-tuned version of [ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan](https://huggingface.co/ptah23/ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7839
- Accuracy: 0.9

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0007        | 1.0   | 112  | 0.7015          | 0.82     |
| 0.063         | 2.0   | 225  | 0.7797          | 0.82     |
| 0.1259        | 3.0   | 337  | 1.1225          | 0.83     |
| 0.0003        | 4.0   | 450  | 0.5694          | 0.89     |
| 0.0016        | 5.0   | 562  | 0.7449          | 0.89     |
| 0.0           | 6.0   | 675  | 0.9446          | 0.89     |
| 0.0           | 7.0   | 787  | 0.8780          | 0.88     |
| 0.0           | 8.0   | 900  | 0.7953          | 0.89     |
| 0.0988        | 9.0   | 1012 | 0.7962          | 0.9      |
| 0.0           | 9.96  | 1120 | 0.7839          | 0.9      |


### Framework versions

- Transformers 4.32.0.dev0
- Pytorch 1.13.1
- Datasets 2.14.3
- Tokenizers 0.13.2