Update README.md
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- generated_from_trainer
|
7 |
- dataset_size:392702
|
8 |
- loss:CosineSimilarityLoss
|
9 |
-
base_model:
|
10 |
widget:
|
11 |
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo
|
12 |
쪽으로. "
|
@@ -61,34 +61,34 @@ model-index:
|
|
61 |
type: sts_dev
|
62 |
metrics:
|
63 |
- type: pearson_cosine
|
64 |
-
value: 0.
|
65 |
name: Pearson Cosine
|
66 |
- type: spearman_cosine
|
67 |
-
value: 0.
|
68 |
name: Spearman Cosine
|
69 |
- type: pearson_euclidean
|
70 |
-
value: 0.
|
71 |
name: Pearson Euclidean
|
72 |
- type: spearman_euclidean
|
73 |
-
value: 0.
|
74 |
name: Spearman Euclidean
|
75 |
- type: pearson_manhattan
|
76 |
-
value: 0.
|
77 |
name: Pearson Manhattan
|
78 |
- type: spearman_manhattan
|
79 |
-
value: 0.
|
80 |
name: Spearman Manhattan
|
81 |
- type: pearson_dot
|
82 |
-
value: 0.
|
83 |
name: Pearson Dot
|
84 |
- type: spearman_dot
|
85 |
-
value: 0.
|
86 |
name: Spearman Dot
|
87 |
- type: pearson_max
|
88 |
-
value: 0.
|
89 |
name: Pearson Max
|
90 |
- type: spearman_max
|
91 |
-
value: 0.
|
92 |
name: Spearman Max
|
93 |
---
|
94 |
|
@@ -192,16 +192,16 @@ You can finetune this model on your own dataset.
|
|
192 |
|
193 |
| Metric | Value |
|
194 |
|:-------------------|:-----------|
|
195 |
-
| pearson_cosine | 0.
|
196 |
-
| spearman_cosine | 0.
|
197 |
-
| pearson_euclidean | 0.
|
198 |
-
| spearman_euclidean | 0.
|
199 |
-
| pearson_manhattan | 0.
|
200 |
-
| spearman_manhattan | 0.
|
201 |
-
| pearson_dot | 0.
|
202 |
-
| spearman_dot | 0.
|
203 |
-
| pearson_max | 0.
|
204 |
-
| **spearman_max** | **0.
|
205 |
|
206 |
<!--
|
207 |
## Bias, Risks and Limitations
|
@@ -267,237 +267,6 @@ You can finetune this model on your own dataset.
|
|
267 |
}
|
268 |
```
|
269 |
|
270 |
-
### Training Hyperparameters
|
271 |
-
#### Non-Default Hyperparameters
|
272 |
-
|
273 |
-
- `overwrite_output_dir`: True
|
274 |
-
- `eval_strategy`: steps
|
275 |
-
- `per_device_train_batch_size`: 16
|
276 |
-
- `per_device_eval_batch_size`: 16
|
277 |
-
- `gradient_accumulation_steps`: 8
|
278 |
-
- `warmup_ratio`: 0.1
|
279 |
-
- `push_to_hub`: True
|
280 |
-
- `hub_model_id`: x2bee/sts_nli_tune_test
|
281 |
-
- `hub_strategy`: checkpoint
|
282 |
-
- `batch_sampler`: no_duplicates
|
283 |
-
|
284 |
-
#### All Hyperparameters
|
285 |
-
<details><summary>Click to expand</summary>
|
286 |
-
|
287 |
-
- `overwrite_output_dir`: True
|
288 |
-
- `do_predict`: False
|
289 |
-
- `eval_strategy`: steps
|
290 |
-
- `prediction_loss_only`: True
|
291 |
-
- `per_device_train_batch_size`: 16
|
292 |
-
- `per_device_eval_batch_size`: 16
|
293 |
-
- `per_gpu_train_batch_size`: None
|
294 |
-
- `per_gpu_eval_batch_size`: None
|
295 |
-
- `gradient_accumulation_steps`: 8
|
296 |
-
- `eval_accumulation_steps`: None
|
297 |
-
- `torch_empty_cache_steps`: None
|
298 |
-
- `learning_rate`: 5e-05
|
299 |
-
- `weight_decay`: 0.0
|
300 |
-
- `adam_beta1`: 0.9
|
301 |
-
- `adam_beta2`: 0.999
|
302 |
-
- `adam_epsilon`: 1e-08
|
303 |
-
- `max_grad_norm`: 1.0
|
304 |
-
- `num_train_epochs`: 3.0
|
305 |
-
- `max_steps`: -1
|
306 |
-
- `lr_scheduler_type`: linear
|
307 |
-
- `lr_scheduler_kwargs`: {}
|
308 |
-
- `warmup_ratio`: 0.1
|
309 |
-
- `warmup_steps`: 0
|
310 |
-
- `log_level`: passive
|
311 |
-
- `log_level_replica`: warning
|
312 |
-
- `log_on_each_node`: True
|
313 |
-
- `logging_nan_inf_filter`: True
|
314 |
-
- `save_safetensors`: True
|
315 |
-
- `save_on_each_node`: False
|
316 |
-
- `save_only_model`: False
|
317 |
-
- `restore_callback_states_from_checkpoint`: False
|
318 |
-
- `no_cuda`: False
|
319 |
-
- `use_cpu`: False
|
320 |
-
- `use_mps_device`: False
|
321 |
-
- `seed`: 42
|
322 |
-
- `data_seed`: None
|
323 |
-
- `jit_mode_eval`: False
|
324 |
-
- `use_ipex`: False
|
325 |
-
- `bf16`: False
|
326 |
-
- `fp16`: False
|
327 |
-
- `fp16_opt_level`: O1
|
328 |
-
- `half_precision_backend`: auto
|
329 |
-
- `bf16_full_eval`: False
|
330 |
-
- `fp16_full_eval`: False
|
331 |
-
- `tf32`: None
|
332 |
-
- `local_rank`: 0
|
333 |
-
- `ddp_backend`: None
|
334 |
-
- `tpu_num_cores`: None
|
335 |
-
- `tpu_metrics_debug`: False
|
336 |
-
- `debug`: []
|
337 |
-
- `dataloader_drop_last`: True
|
338 |
-
- `dataloader_num_workers`: 0
|
339 |
-
- `dataloader_prefetch_factor`: None
|
340 |
-
- `past_index`: -1
|
341 |
-
- `disable_tqdm`: False
|
342 |
-
- `remove_unused_columns`: True
|
343 |
-
- `label_names`: None
|
344 |
-
- `load_best_model_at_end`: False
|
345 |
-
- `ignore_data_skip`: False
|
346 |
-
- `fsdp`: []
|
347 |
-
- `fsdp_min_num_params`: 0
|
348 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
349 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
350 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
351 |
-
- `deepspeed`: None
|
352 |
-
- `label_smoothing_factor`: 0.0
|
353 |
-
- `optim`: adamw_torch
|
354 |
-
- `optim_args`: None
|
355 |
-
- `adafactor`: False
|
356 |
-
- `group_by_length`: False
|
357 |
-
- `length_column_name`: length
|
358 |
-
- `ddp_find_unused_parameters`: None
|
359 |
-
- `ddp_bucket_cap_mb`: None
|
360 |
-
- `ddp_broadcast_buffers`: False
|
361 |
-
- `dataloader_pin_memory`: True
|
362 |
-
- `dataloader_persistent_workers`: False
|
363 |
-
- `skip_memory_metrics`: True
|
364 |
-
- `use_legacy_prediction_loop`: False
|
365 |
-
- `push_to_hub`: True
|
366 |
-
- `resume_from_checkpoint`: None
|
367 |
-
- `hub_model_id`: x2bee/sts_nli_tune_test
|
368 |
-
- `hub_strategy`: checkpoint
|
369 |
-
- `hub_private_repo`: None
|
370 |
-
- `hub_always_push`: False
|
371 |
-
- `gradient_checkpointing`: False
|
372 |
-
- `gradient_checkpointing_kwargs`: None
|
373 |
-
- `include_inputs_for_metrics`: False
|
374 |
-
- `include_for_metrics`: []
|
375 |
-
- `eval_do_concat_batches`: True
|
376 |
-
- `fp16_backend`: auto
|
377 |
-
- `push_to_hub_model_id`: None
|
378 |
-
- `push_to_hub_organization`: None
|
379 |
-
- `mp_parameters`:
|
380 |
-
- `auto_find_batch_size`: False
|
381 |
-
- `full_determinism`: False
|
382 |
-
- `torchdynamo`: None
|
383 |
-
- `ray_scope`: last
|
384 |
-
- `ddp_timeout`: 1800
|
385 |
-
- `torch_compile`: False
|
386 |
-
- `torch_compile_backend`: None
|
387 |
-
- `torch_compile_mode`: None
|
388 |
-
- `dispatch_batches`: None
|
389 |
-
- `split_batches`: None
|
390 |
-
- `include_tokens_per_second`: False
|
391 |
-
- `include_num_input_tokens_seen`: False
|
392 |
-
- `neftune_noise_alpha`: None
|
393 |
-
- `optim_target_modules`: None
|
394 |
-
- `batch_eval_metrics`: False
|
395 |
-
- `eval_on_start`: False
|
396 |
-
- `use_liger_kernel`: False
|
397 |
-
- `eval_use_gather_object`: False
|
398 |
-
- `average_tokens_across_devices`: False
|
399 |
-
- `prompts`: None
|
400 |
-
- `batch_sampler`: no_duplicates
|
401 |
-
- `multi_dataset_batch_sampler`: proportional
|
402 |
-
|
403 |
-
</details>
|
404 |
-
|
405 |
-
### Training Logs
|
406 |
-
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|
407 |
-
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
|
408 |
-
| 0.0326 | 25 | 0.3733 | - | - |
|
409 |
-
| 0.0652 | 50 | 0.362 | - | - |
|
410 |
-
| 0.0978 | 75 | 0.3543 | - | - |
|
411 |
-
| 0.1304 | 100 | 0.3431 | - | - |
|
412 |
-
| 0.1630 | 125 | 0.3273 | - | - |
|
413 |
-
| 0.1956 | 150 | 0.2745 | - | - |
|
414 |
-
| 0.2282 | 175 | 0.2061 | - | - |
|
415 |
-
| 0.2608 | 200 | 0.1814 | - | - |
|
416 |
-
| 0.2934 | 225 | 0.1658 | - | - |
|
417 |
-
| 0.3260 | 250 | 0.1637 | - | - |
|
418 |
-
| 0.3586 | 275 | 0.1542 | - | - |
|
419 |
-
| 0.3912 | 300 | 0.147 | - | - |
|
420 |
-
| 0.4238 | 325 | 0.1392 | - | - |
|
421 |
-
| 0.4564 | 350 | 0.1329 | - | - |
|
422 |
-
| 0.4890 | 375 | 0.131 | - | - |
|
423 |
-
| 0.5216 | 400 | 0.1294 | - | - |
|
424 |
-
| 0.5542 | 425 | 0.1245 | - | - |
|
425 |
-
| 0.5868 | 450 | 0.1243 | - | - |
|
426 |
-
| 0.6194 | 475 | 0.1237 | - | - |
|
427 |
-
| 0.6520 | 500 | 0.1236 | 0.0956 | 0.5284 |
|
428 |
-
| 0.6846 | 525 | 0.1183 | - | - |
|
429 |
-
| 0.7172 | 550 | 0.1166 | - | - |
|
430 |
-
| 0.7498 | 575 | 0.1176 | - | - |
|
431 |
-
| 0.7824 | 600 | 0.1144 | - | - |
|
432 |
-
| 0.8150 | 625 | 0.1141 | - | - |
|
433 |
-
| 0.8476 | 650 | 0.1093 | - | - |
|
434 |
-
| 0.8802 | 675 | 0.1081 | - | - |
|
435 |
-
| 0.9128 | 700 | 0.1082 | - | - |
|
436 |
-
| 0.9454 | 725 | 0.1078 | - | - |
|
437 |
-
| 0.9780 | 750 | 0.1039 | - | - |
|
438 |
-
| 1.0117 | 775 | 0.1106 | - | - |
|
439 |
-
| 1.0443 | 800 | 0.1113 | - | - |
|
440 |
-
| 1.0769 | 825 | 0.1113 | - | - |
|
441 |
-
| 1.1095 | 850 | 0.1103 | - | - |
|
442 |
-
| 1.1421 | 875 | 0.1098 | - | - |
|
443 |
-
| 1.1747 | 900 | 0.1118 | - | - |
|
444 |
-
| 1.2073 | 925 | 0.1085 | - | - |
|
445 |
-
| 1.2399 | 950 | 0.1057 | - | - |
|
446 |
-
| 1.2725 | 975 | 0.1081 | - | - |
|
447 |
-
| 1.3051 | 1000 | 0.1052 | 0.0930 | 0.5830 |
|
448 |
-
| 1.3377 | 1025 | 0.1087 | - | - |
|
449 |
-
| 1.3703 | 1050 | 0.1046 | - | - |
|
450 |
-
| 1.4029 | 1075 | 0.1032 | - | - |
|
451 |
-
| 1.4355 | 1100 | 0.1037 | - | - |
|
452 |
-
| 1.4681 | 1125 | 0.1026 | - | - |
|
453 |
-
| 1.5007 | 1150 | 0.1036 | - | - |
|
454 |
-
| 1.5333 | 1175 | 0.102 | - | - |
|
455 |
-
| 1.5659 | 1200 | 0.101 | - | - |
|
456 |
-
| 1.5985 | 1225 | 0.1014 | - | - |
|
457 |
-
| 1.6311 | 1250 | 0.1024 | - | - |
|
458 |
-
| 1.6637 | 1275 | 0.1005 | - | - |
|
459 |
-
| 1.6963 | 1300 | 0.0993 | - | - |
|
460 |
-
| 1.7289 | 1325 | 0.0982 | - | - |
|
461 |
-
| 1.7615 | 1350 | 0.0988 | - | - |
|
462 |
-
| 1.7941 | 1375 | 0.0965 | - | - |
|
463 |
-
| 1.8267 | 1400 | 0.0984 | - | - |
|
464 |
-
| 1.8593 | 1425 | 0.0936 | - | - |
|
465 |
-
| 1.8919 | 1450 | 0.0924 | - | - |
|
466 |
-
| 1.9245 | 1475 | 0.0956 | - | - |
|
467 |
-
| 1.9571 | 1500 | 0.0927 | 0.0732 | 0.6470 |
|
468 |
-
| 1.9897 | 1525 | 0.0915 | - | - |
|
469 |
-
| 2.0235 | 1550 | 0.0991 | - | - |
|
470 |
-
| 2.0561 | 1575 | 0.097 | - | - |
|
471 |
-
| 2.0887 | 1600 | 0.0957 | - | - |
|
472 |
-
| 2.1213 | 1625 | 0.0968 | - | - |
|
473 |
-
| 2.1539 | 1650 | 0.0968 | - | - |
|
474 |
-
| 2.1865 | 1675 | 0.0973 | - | - |
|
475 |
-
| 2.2191 | 1700 | 0.0936 | - | - |
|
476 |
-
| 2.2517 | 1725 | 0.0955 | - | - |
|
477 |
-
| 2.2843 | 1750 | 0.0942 | - | - |
|
478 |
-
| 2.3169 | 1775 | 0.0939 | - | - |
|
479 |
-
| 2.3495 | 1800 | 0.0947 | - | - |
|
480 |
-
| 2.3821 | 1825 | 0.0934 | - | - |
|
481 |
-
| 2.4147 | 1850 | 0.0919 | - | - |
|
482 |
-
| 2.4473 | 1875 | 0.0919 | - | - |
|
483 |
-
| 2.4799 | 1900 | 0.0928 | - | - |
|
484 |
-
| 2.5125 | 1925 | 0.0927 | - | - |
|
485 |
-
| 2.5451 | 1950 | 0.0899 | - | - |
|
486 |
-
| 2.5777 | 1975 | 0.0911 | - | - |
|
487 |
-
| 2.6103 | 2000 | 0.0915 | 0.0671 | 0.6687 |
|
488 |
-
| 2.6429 | 2025 | 0.0905 | - | - |
|
489 |
-
| 2.6755 | 2050 | 0.0894 | - | - |
|
490 |
-
| 2.7081 | 2075 | 0.0887 | - | - |
|
491 |
-
| 2.7407 | 2100 | 0.0903 | - | - |
|
492 |
-
| 2.7733 | 2125 | 0.0887 | - | - |
|
493 |
-
| 2.8059 | 2150 | 0.0869 | - | - |
|
494 |
-
| 2.8385 | 2175 | 0.0871 | - | - |
|
495 |
-
| 2.8711 | 2200 | 0.0843 | - | - |
|
496 |
-
| 2.9037 | 2225 | 0.0838 | - | - |
|
497 |
-
| 2.9363 | 2250 | 0.0864 | - | - |
|
498 |
-
| 2.9689 | 2275 | 0.0831 | - | - |
|
499 |
-
|
500 |
-
|
501 |
### Framework Versions
|
502 |
- Python: 3.11.10
|
503 |
- Sentence Transformers: 3.3.1
|
|
|
6 |
- generated_from_trainer
|
7 |
- dataset_size:392702
|
8 |
- loss:CosineSimilarityLoss
|
9 |
+
base_model: answerdotai/ModernBERT-base
|
10 |
widget:
|
11 |
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ... 약 371km / s에서 별자리 leo
|
12 |
쪽으로. "
|
|
|
61 |
type: sts_dev
|
62 |
metrics:
|
63 |
- type: pearson_cosine
|
64 |
+
value: 0.8273878707711191
|
65 |
name: Pearson Cosine
|
66 |
- type: spearman_cosine
|
67 |
+
value: 0.8298080691919564
|
68 |
name: Spearman Cosine
|
69 |
- type: pearson_euclidean
|
70 |
+
value: 0.8112987734110177
|
71 |
name: Pearson Euclidean
|
72 |
- type: spearman_euclidean
|
73 |
+
value: 0.8214596205940881
|
74 |
name: Spearman Euclidean
|
75 |
- type: pearson_manhattan
|
76 |
+
value: 0.8125188338482303
|
77 |
name: Pearson Manhattan
|
78 |
- type: spearman_manhattan
|
79 |
+
value: 0.8226861322419045
|
80 |
name: Spearman Manhattan
|
81 |
- type: pearson_dot
|
82 |
+
value: 0.7646820898603437
|
83 |
name: Pearson Dot
|
84 |
- type: spearman_dot
|
85 |
+
value: 0.7648333772102188
|
86 |
name: Spearman Dot
|
87 |
- type: pearson_max
|
88 |
+
value: 0.8273878707711191
|
89 |
name: Pearson Max
|
90 |
- type: spearman_max
|
91 |
+
value: 0.8298080691919564
|
92 |
name: Spearman Max
|
93 |
---
|
94 |
|
|
|
192 |
|
193 |
| Metric | Value |
|
194 |
|:-------------------|:-----------|
|
195 |
+
| pearson_cosine | 0.8273 |
|
196 |
+
| spearman_cosine | 0.8298 |
|
197 |
+
| pearson_euclidean | 0.8112 |
|
198 |
+
| spearman_euclidean | 0.8214 |
|
199 |
+
| pearson_manhattan | 0.8125 |
|
200 |
+
| spearman_manhattan | 0.8226 |
|
201 |
+
| pearson_dot | 0.7648 |
|
202 |
+
| spearman_dot | 0.7648 |
|
203 |
+
| pearson_max | 0.8273 |
|
204 |
+
| **spearman_max** | **0.8298** |
|
205 |
|
206 |
<!--
|
207 |
## Bias, Risks and Limitations
|
|
|
267 |
}
|
268 |
```
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
### Framework Versions
|
271 |
- Python: 3.11.10
|
272 |
- Sentence Transformers: 3.3.1
|