CodingQueen13 commited on
Commit
8c9cca9
1 Parent(s): da889c7

End of training

Browse files
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.84
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.8931
36
+ - Accuracy: 0.84
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: cosine
61
+ - lr_scheduler_warmup_ratio: 0.05
62
+ - num_epochs: 20
63
+ - mixed_precision_training: Native AMP
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 1.9292 | 1.0 | 113 | 1.8783 | 0.49 |
70
+ | 1.1771 | 2.0 | 226 | 1.2910 | 0.64 |
71
+ | 0.9343 | 3.0 | 339 | 1.0554 | 0.67 |
72
+ | 0.5929 | 4.0 | 452 | 0.8423 | 0.75 |
73
+ | 0.5678 | 5.0 | 565 | 0.7333 | 0.78 |
74
+ | 0.2351 | 6.0 | 678 | 0.6266 | 0.84 |
75
+ | 0.2348 | 7.0 | 791 | 0.6047 | 0.81 |
76
+ | 0.0834 | 8.0 | 904 | 0.7525 | 0.82 |
77
+ | 0.0374 | 9.0 | 1017 | 0.8083 | 0.82 |
78
+ | 0.0089 | 10.0 | 1130 | 0.7745 | 0.83 |
79
+ | 0.0068 | 11.0 | 1243 | 0.7883 | 0.85 |
80
+ | 0.0046 | 12.0 | 1356 | 0.8266 | 0.84 |
81
+ | 0.004 | 13.0 | 1469 | 0.8557 | 0.84 |
82
+ | 0.0038 | 14.0 | 1582 | 0.9485 | 0.83 |
83
+ | 0.0031 | 15.0 | 1695 | 0.9042 | 0.84 |
84
+ | 0.0031 | 16.0 | 1808 | 0.8945 | 0.84 |
85
+ | 0.0031 | 17.0 | 1921 | 0.8780 | 0.84 |
86
+ | 0.0026 | 18.0 | 2034 | 0.9071 | 0.84 |
87
+ | 0.0027 | 19.0 | 2147 | 0.8932 | 0.84 |
88
+ | 0.0027 | 20.0 | 2260 | 0.8931 | 0.84 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.42.4
94
+ - Pytorch 2.4.0+cu121
95
+ - Datasets 2.21.0
96
+ - Tokenizers 0.19.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:01a3519fd851db3179ff6d38803f486bf575e4a8fde5c98e58201af950f0dd1e
3
  size 94771728
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b2701bda6c758816f16daccfb6a39b90ba252923d92ec9c93cfe9958c572f9bc
3
  size 94771728
runs/Sep04_09-03-47_de5ed1468100/events.out.tfevents.1725440865.de5ed1468100.480.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7645798b81b461d557c6f6fd098e252fa832c7ed283c8688f2286ff498144cd7
3
- size 107459
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd810ecc34707bb4068c508324b1b77aed60015f3743b4921cb4a3a31b77bc75
3
+ size 108136