{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3a8b179f40>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687184830776456759, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAJcTlD5sEcc/z8XivhNDBT/H8eU/oVmdP75zUboi16q/4zOwvvpYpL/CgGm/eEDhPskBpb+MvZ2+7A2MPeCZjb/H+J4/IO9Bv8ackryLyGk/XzA5vybzHcCARYA/zxv/v2jIvL/CV+E+ay7UPgFQZD+Kp88+GJuQPyma2z06S7c/cU+5P+YGR8AG5ls+bCjkvsI/or6L3i8/7OIFPwBdVkC5qsG/91jMPSm0uj0DlrE//fwUPwict78T4BM8XyAaQMYhWL8Fdu4/7JbAPjO+Sb9oyLy//GkRwBZvGsDHhY+/2Isev9tkC0BzaPu/NM31PuF1nz8hrFQ/17UNP3oNpr8KG7++QObDvrZhEL+0iLM/4khyv/6etj554Lw+UepTv5YUsT87tIK+2oRsP6iuRj8Ri4y/YaI7PZRuR77kGVW/aMi8v8JX4T5rLtQ+AVBkP6hi2D+ujC2/TtCXPlN2c75VlMI966D8v+7r6r9tIh7AGGCBvkGReb8YbYW/fC1HwGiSxr8oteA+a2EoP2HUOb8iosk/wFqqvqooKcDbig3A72lKv4wM4b8q0g8+2UkXPmjIvL/CV+E+Fm8awMeFj7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB7eec1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAL69GuwAAAADHcty/AAAAAI20cz0AAAAA+eUAQAAAAADW/E88AAAAAEBF7j8AAAAAg9OqOwAAAABXh+a/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3PoBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMZUlrwAAAAA+EnovwAAAAAEFiK8AAAAAHQ94j8AAAAA2Ui6PQAAAADsmv0/AAAAAL/cUDwAAAAAhiTyvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOsmvLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAuh6U9AAAAAG/u9b8AAAAAsh9/vQAAAADgTeI/AAAAAMUM5TwAAAAANtH9PwAAAADIuVi9AAAAAHiW878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABsktw2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhTPpPAAAAACrCfu/AAAAAG1VBz4AAAAA3XD5PwAAAACs3Pw9AAAAAJox3z8AAAAAm3ZjvQAAAACtMue/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIHhzns9jgCMAWyUTegDjAF0lEdArsB6GUOd5XV9lChoBkdAfHjhd+ocaWgHTegDaAhHQK7BteGfwql1fZQoaAZHQIH2vVqesgdoB03oA2gIR0CuxZC9AX2vdX2UKGgGR0B4M9olD4QCaAdN6ANoCEdArsboT/Q0GnV9lChoBkdAkRNpEx7AtWgHTegDaAhHQK7T/EOy3Td1fZQoaAZHQIgcz4L1EmZoB03oA2gIR0Cu1SARkEs8dX2UKGgGR0CSa05Pdl/ZaAdN6ANoCEdArtil2icoY3V9lChoBkdAkClszVMEimgHTegDaAhHQK7Zg79Q40d1fZQoaAZHQJAkSqPwNLFoB03oA2gIR0Cu4ef1xsEadX2UKGgGR0CVKvfYzzmPaAdN6ANoCEdAruMUVJtix3V9lChoBkdAlR8xV6u4gGgHTegDaAhHQK7mhooNNJx1fZQoaAZHQJbGn0voNd9oB03oA2gIR0Cu55HNX5nEdX2UKGgGR0CWvAi35N48aAdN6ANoCEdArvTg22oegnV9lChoBkdAl/hAnc+JQGgHTegDaAhHQK72Eqbz9TB1fZQoaAZHQJhDDbHp8nhoB03oA2gIR0Cu+bysr/bTdX2UKGgGR0CV8LYLb5/LaAdN6ANoCEdArvqbIxQBP3V9lChoBkdAlnbK4lQdj2gHTegDaAhHQK8DNgogFHJ1fZQoaAZHQJeqNhYvFm5oB03oA2gIR0CvBGqe05U+dX2UKGgGR0CRN7AXVLBbaAdN6ANoCEdArwgfE61b7nV9lChoBkdAlFKlpj+aSmgHTegDaAhHQK8JAxeLNwB1fZQoaAZHQIqmBOWSlnBoB03oA2gIR0CvFy/WlMyrdX2UKGgGR0CUBhyLyc0+aAdN6ANoCEdArxhwixFAmnV9lChoBkdAj2xvzWf9P2gHTegDaAhHQK8cHKqXF991fZQoaAZHQHV5OyRjjJdoB03oA2gIR0CvHQYrjHXFdX2UKGgGR0CQmM/NqxkeaAdN6ANoCEdAryXWr8zhxnV9lChoBkdAlKL167dzn2gHTegDaAhHQK8nA7Xg9/11fZQoaAZHQI7SAwyqMm5oB03oA2gIR0CvKo8m8dxRdX2UKGgGR0CWYjpEx7AtaAdN6ANoCEdAryuFKkEcKnV9lChoBkdAlV0IrBj4H2gHTegDaAhHQK85TJgb6xh1fZQoaAZHQI5BOktVaOhoB03oA2gIR0CvOpTBInSfdX2UKGgGR0CVLhHY6GQCaAdN6ANoCEdArz4tMj/uLXV9lChoBkdAlsVtGus90WgHTegDaAhHQK8/Es4ku6F1fZQoaAZHQJMDjJvHcUNoB03oA2gIR0CvR8elKsdUdX2UKGgGR0CU5odu5z5oaAdN6ANoCEdAr0j1Whh6SnV9lChoBkdAitXKR2bG3mgHTegDaAhHQK9Mn1ZkkKN1fZQoaAZHQJVWCdy1eBxoB03oA2gIR0CvTYLS/j82dX2UKGgGR0CSrOmIj4YaaAdN6ANoCEdAr1rf/DLr5nV9lChoBkdAlSByimEXcmgHTegDaAhHQK9cUsr/bTN1fZQoaAZHQJV6e3NLUTdoB03oA2gIR0CvX9MNtqHodX2UKGgGR0CUaZSH/LkkaAdN6ANoCEdAr2DDY5DJEHV9lChoBkdAl3Nnd0q6OGgHTegDaAhHQK9pZgogFHJ1fZQoaAZHQJI3IMc6vJRoB03oA2gIR0CvaqVtO2y+dX2UKGgGR0CN+ItMfzSUaAdN6ANoCEdAr25fUDuBtnV9lChoBkdAksKM3AEdNmgHTegDaAhHQK9vPxc3VCp1fZQoaAZHQJJQ34VRDTloB03oA2gIR0CvfIVs+FDfdX2UKGgGR0CTAvnW8RL9aAdN6ANoCEdAr34CCFsYVXV9lChoBkdAkc5nktEofGgHTegDaAhHQK+BkseXAuZ1fZQoaAZHQJJtZ5UtI09oB03oA2gIR0CvgnD+R5kcdX2UKGgGR0CU09qVhTfjaAdN6ANoCEdAr4s7TF2mpHV9lChoBkdAkDVewX668WgHTegDaAhHQK+MaIyj59F1fZQoaAZHQJRXZ2gWac9oB03oA2gIR0Cvj/43m3fAdX2UKGgGR0CRPz+23KB/aAdN6ANoCEdAr5DlQuVX3nV9lChoBkdAiDt8/dIoVmgHTegDaAhHQK+elkkKNQ11fZQoaAZHQJSEVZMcp9ZoB03oA2gIR0CvoC16NVBEdX2UKGgGR0CSu9u8scyWaAdN6ANoCEdAr6O6idrftXV9lChoBkdAk+BjVpblimgHTegDaAhHQK+kmdkJ8fF1fZQoaAZHQJPygKJEYwZoB03oA2gIR0CvrSDV6NVBdX2UKGgGR0CUSCT9KmKqaAdN6ANoCEdAr65I86mwaHV9lChoBkdAksLiiAUcn2gHTegDaAhHQK+xy5uIhyN1fZQoaAZHQJGoB2yLQ5ZoB03oA2gIR0CvsrlvhqCZdX2UKGgGR0CU3nhTwUg0aAdN6ANoCEdAr7+eS6lLvnV9lChoBkdAlJeZJPIn0GgHTegDaAhHQK/BjfAsTWZ1fZQoaAZHQJOxYJswco9oB03oA2gIR0CvxS1/DtPYdX2UKGgGR0CUfQwzLwF1aAdN6ANoCEdAr8YRAlfJFXV9lChoBkdAlU+Wn889wGgHTegDaAhHQK/O0SkCV8l1fZQoaAZHQJVn6PuG9HtoB03oA2gIR0Cvz/U8eS0TdX2UKGgGR0CWaR7L+xW1aAdN6ANoCEdAr9N2LiuMdnV9lChoBkdAlMjh59mYjWgHTegDaAhHQK/UVFpfx+d1fZQoaAZHQJU5hPBSDRNoB03oA2gIR0Cv4NzUI9kjdX2UKGgGR0CVWcttQ9A5aAdN6ANoCEdAr+K1f3N9pnV9lChoBkdAkVEk0Jng52gHTegDaAhHQK/mfDYRNAV1fZQoaAZHQJLebdUKiPBoB03oA2gIR0Cv510b961LdX2UKGgGR0CUkv/FzdULaAdN6ANoCEdAr/AbRfF72XV9lChoBkdAlYB2+Cbtq2gHTegDaAhHQK/xSM6zVtp1fZQoaAZHQJSr+V7hNudoB03oA2gIR0Cv9L6hYeT3dX2UKGgGR0CTo2n3ta6jaAdN6ANoCEdAr/WhIWgvlHV9lChoBkdAlbqb0WdmQWgHTegDaAhHQLABAkvboKV1fZQoaAZHQJXY2bqhUR5oB03oA2gIR0CwAfVEAo5QdX2UKGgGR0CTBq5Qgs9TaAdN6ANoCEdAsAQTIikftHV9lChoBkdAmBF3a37UG2gHTegDaAhHQLAEhdfLLZB1fZQoaAZHQJRReXw9aEBoB03oA2gIR0CwCNLBoEjgdX2UKGgGR0CW0Nr9ETg3aAdN6ANoCEdAsAlpgYxcmnV9lChoBkdAiqPk/8l5W2gHTegDaAhHQLALNFB6a9d1fZQoaAZHQJGEXh3qzJJoB03oA2gIR0CwC6fL9uP4dX2UKGgGR0CQvniMHbAUaAdN6ANoCEdAsBHbQnhKlHV9lChoBkdAlLRI4ACGOGgHTegDaAhHQLAS1xp+MIh1fZQoaAZHQJHZtBjWkJtoB03oA2gIR0CwFQxStNi6dX2UKGgGR0COnmCL/CIlaAdN6ANoCEdAsBV97w8W9HV9lChoBkdAkOojVQQ+U2gHTegDaAhHQLAZ1j4Hoox1fZQoaAZHQJRuhFx4pttoB03oA2gIR0CwGmnN5dGBdX2UKGgGR0CUem4vvjOtaAdN6ANoCEdAsBwym8/Uv3V9lChoBkdAkiwcHSnccmgHTegDaAhHQLAcq3BHkLh1fZQoaAZHQJW6RWn0kGBoB03oA2gIR0CwIqYKhL5AdX2UKGgGR0CTFtBeokzHaAdN6ANoCEdAsCOatlqagHV9lChoBkdAkkJPsqril2gHTegDaAhHQLAl4vW6K+B1fZQoaAZHQJO38CT2WY5oB03oA2gIR0CwJlH+AEt/dX2UKGgGR0CFsuy+HrQgaAdN6ANoCEdAsCqwZuQ6qHV9lChoBkdAi8saF/QSjGgHTegDaAhHQLArPvo/zJ91fZQoaAZHQJF2+ntOVPhoB03oA2gIR0CwLQMl5WzXdX2UKGgGR0CUO7s0HhS+aAdN6ANoCEdAsC1yFj/dZnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}