CodyKilpatrick
commited on
Commit
•
6f337e5
1
Parent(s):
8a3456f
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +1 -1
- ppo-LunarLander-v2/data +16 -16
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- ppo-LunarLander-v2/system_info.txt +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 265.08 +/- 20.87
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd776e6e200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd776e6e290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd776e6e320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd776e6e3b0>", "_build": "<function ActorCriticPolicy._build at 0x7fd776e6e440>", "forward": "<function ActorCriticPolicy.forward at 0x7fd776e6e4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd776e6e560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd776e6e5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd776e6e680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd776e6e710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd776e6e7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd776e6e830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd776e69180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684767029111851014, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJqej7zC7Tw+doX+vR6mQb4frw++KnKavQAAAAAAAAAAAO8MvVzLFrpKHU25XGJAtD2+NzqS5XQ4AACAPwAAgD/N4P07UZKSPVqIfj2LO2++EhE5u2Hsjb0AAAAAAAAAAG3wSr6xejQ/hYa7PX1njL7vx2m9+HSJPQAAAAAAAAAAMzvAPDdcBz+Ce4C9G0ZYvu8xqLtG6IY7AAAAAAAAAAAqk4o+KzkhPzZah722Hae+aSMFPthPgr0AAAAAAAAAAE1eKL0PeFg/gyKGvKFwuL6Pc6g8zM1KPQAAAAAAAAAATWtCvR31Jj8VoCc9qaiEvqI7Ib2Fl289AAAAAAAAAACN+qw9RA+ZPoC3Fz25eoi+SisVPfVk+zsAAAAAAAAAALPspr1ch2O6+3gnO3UO/jafTX47vw9CugAAAAAAAAAA8AtWvpeDOz922Q0+ku6evjrAVb0a9Xk9AAAAAAAAAADj3Iu+hykhP+uN8j088qK+rKb+vZ3T4D0AAAAAAAAAAE1yaz1xWYE9o2EYvvZ6Yb4Bz0K9yD3gPQAAAAAAAAAAAId5vekWVD2dACk+IZZHvkxhGLv45cw8AAAAAAAAAABm/Aq9BZvYu+OozrtdVY8876c6PaKbcb0AAIA/AACAPwBccDzRS58/+GTaPE99pb7+xic88PC0PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8O5qM3qA2MAWyUTToBjAF0lEdAlA7LyYoiLXV9lChoBkdAcbVBtk4FR2gHS/NoCEdAlA/rM5fdAXV9lChoBkdAcQAAYHgP3GgHTbEBaAhHQJQQeIk7fYV1fZQoaAZHQE+d6qKgqVhoB00HAWgIR0CUELsKLKmsdX2UKGgGR0BxqT8CPp6haAdN1AFoCEdAlBNrSJCSinV9lChoBkdAb/KsySFGomgHTXoBaAhHQJQW8dV/+bV1fZQoaAZHQF5RUQTVUddoB03oA2gIR0CUFx+yJKradX2UKGgGR0BwOI7DEWIoaAdNsgFoCEdAlBcsK1G9YnV9lChoBkdAb4TV3ljmS2gHTY0BaAhHQJQZopSaVlh1fZQoaAZHQHDZYu5BkZtoB03vAWgIR0CUHQ0b961LdX2UKGgGR0Bw9MmlZX+3aAdN4QFoCEdAlB/wSeyzHHV9lChoBkdAb0oo4MnZ02gHTXYBaAhHQJQxQFTvRZ51fZQoaAZHQHEKkO3DvVpoB00SAWgIR0CUM9t2s7uEdX2UKGgGR0Bw/wRFqi48aAdN2AFoCEdAlDYTiS7oS3V9lChoBkdAbQXru6VdHGgHTYYCaAhHQJQ2I8bJfY11fZQoaAZHQGdHBTOxB3RoB03oA2gIR0CUN+AB1cMWdX2UKGgGR0BxmhMVUModaAdNtwFoCEdAlDjHc+JP7HV9lChoBkdAcfsVG0/nn2gHTccCaAhHQJQ4+TmnwXt1fZQoaAZHQHJBRVdX1apoB01MAmgIR0CUOnXUYsNEdX2UKGgGR0BsHZCfHxSYaAdNhAFoCEdAlDrAYgq3E3V9lChoBkdAcYi+b3Gn42gHTZkBaAhHQJQ7kN6PbPB1fZQoaAZHQHCq/oePq9poB01XA2gIR0CUPpjkdV/+dX2UKGgGR0Bw4yKFZgXuaAdNDwFoCEdAlEAwKfFrEnV9lChoBkdAcMdC6H0sfGgHTSMBaAhHQJRATPTodMl1fZQoaAZHQG+ttQTEit9oB02mAWgIR0CURD2WIGhVdX2UKGgGR0ByC7jo6jnFaAdNfwNoCEdAlEZFtwaR6nV9lChoBkdAcmMC53C9AWgHTUMBaAhHQJRGVnAZbY91fZQoaAZHQHA7ewX668RoB01IAWgIR0CUSCL6k691dX2UKGgGR0BxffLSuyNXaAdNPQFoCEdAlEr8IAwPAnV9lChoBkdAMY81CPZIx2gHS/BoCEdAlExJFLFn7HV9lChoBkdAcAIejmCAc2gHTUcBaAhHQJRMR4nndO91fZQoaAZHQG+/mHgxagVoB02MAWgIR0CUTGt6HCXQdX2UKGgGR0BwJyuZCv5haAdNeQFoCEdAlE1vJq7AcnV9lChoBkdAcIX7NSqEOGgHTSsBaAhHQJRNf/yXlbN1fZQoaAZHQHH0AoG6f8NoB03SAWgIR0CUT8xZMcp9dX2UKGgGR0BgObrHEMspaAdN6ANoCEdAlE/aMFUyYXV9lChoBkdAcaNgVoHs1WgHTU4BaAhHQJRUMIsyzol1fZQoaAZHQG9L1xKg7HRoB03DAWgIR0CUVKLS/j82dX2UKGgGR0BuEFNFjNILaAdNiQNoCEdAlFWcEq2BrnV9lChoBkdASGtJz1bqyGgHS9loCEdAlFYMJdB0IXV9lChoBkdAcqTij+Jgs2gHTSABaAhHQJRXxFz+3ph1fZQoaAZHQHIiAow22ohoB004AWgIR0CUWMhSLqD9dX2UKGgGR0Bx1GXmeUY9aAdNsAFoCEdAlFnjin5zo3V9lChoBkdAcS2qsU7CBWgHTRMCaAhHQJRay0dBBzF1fZQoaAZHQHC2562OQyRoB02EAWgIR0CUWswWWQfZdX2UKGgGR0BwZXExZdOZaAdNEQNoCEdAlFriQ5myxHV9lChoBkdAcMUZqEeyRmgHTQ0DaAhHQJRcUiGFi8Z1fZQoaAZHQHCKyVv/BFdoB016AWgIR0CUXHvrGBFvdX2UKGgGR0BwZZ1QqI8AaAdNsAFoCEdAlF17zf779HV9lChoBkdAb7LUG3WnTGgHTZkBaAhHQJRwo24uscR1fZQoaAZHQGxLA6Mir1doB02CAmgIR0CUcRelbeMydX2UKGgGR0BO5rThHbypaAdL7WgIR0CUcf6ySmqHdX2UKGgGR0BxYHsMRYigaAdNywFoCEdAlHNbDdgv13V9lChoBkdAcBRZP2wmmmgHTUABaAhHQJR0HsWweNl1fZQoaAZHQG+i2TPjXFtoB01xAWgIR0CUdEPrfLs9dX2UKGgGR0BxMHLhaTwEaAdNaAFoCEdAlHRUoKD02HV9lChoBkdAcg0jM3ZPEmgHTSgBaAhHQJR2Dci4axZ1fZQoaAZHQG+2kofCAMFoB015AWgIR0CUdijgQ6IWdX2UKGgGR0BwSibayrxRaAdNNAFoCEdAlHfeNgjQiXV9lChoBkdAQkyf+S8rZ2gHS+toCEdAlHkOX7cfvHV9lChoBkdAccN0K7ZnMGgHTTgBaAhHQJR5Nc7hegN1fZQoaAZHQHAqurU9ZA9oB01CAWgIR0CUebCaZx7zdX2UKGgGR0Bs/Cxu89OiaAdNQQFoCEdAlHm+tGNJe3V9lChoBkdAbwfFEy+HrWgHTUcBaAhHQJR7x9F4LTh1fZQoaAZHQHA1pRTCLuRoB01KAWgIR0CUfCM+eOGTdX2UKGgGR0BwV0+HJtBOaAdNKAFoCEdAlH73yiEg4nV9lChoBkdAbDXSDRMN+mgHTSYBaAhHQJR/RGFzuF91fZQoaAZHQHLQ1JYkmhNoB0vwaAhHQJR/ZnmJWNp1fZQoaAZHQG9O/4IrvstoB00mAWgIR0CUgBEtdzGQdX2UKGgGR0BuBq/sVtXQaAdNDwFoCEdAlIEKoybhFXV9lChoBkdAcenbzshPkGgHTRcBaAhHQJSBWfzz3AV1fZQoaAZHQG//P114gRtoB01MAWgIR0CUhNOby6MBdX2UKGgGR0BxSMzrNW2gaAdNkQFoCEdAlIU588cMmXV9lChoBkdAcCbHNorWiGgHTXkBaAhHQJSGfo0Q9Rt1fZQoaAZHQG7Z+l0o0ANoB01VAWgIR0CUhp38n/kvdX2UKGgGR0Bv3un62v0RaAdNPwFoCEdAlIbDQ3PzF3V9lChoBkdAbXWuaF23a2gHTR0BaAhHQJSHltbcGkh1fZQoaAZHQGyrgEt/WlNoB01QAWgIR0CUh8DjR2KVdX2UKGgGR0BtV4ybhFVlaAdNKgFoCEdAlIhT4cm0FHV9lChoBkdAcCorzoUzsWgHTWoBaAhHQJSIqGh24d91fZQoaAZHQD5Ut6HCXQdoB0vuaAhHQJSI/Sx7iQ11fZQoaAZHQHE1kNWluWNoB02OAWgIR0CUiUkf9xZMdX2UKGgGR0Bw2bZ9NN8FaAdNDAFoCEdAlIqQc94eLnV9lChoBkdAcVV3gk1MumgHTTABaAhHQJSLclyBCld1fZQoaAZHQG5je1SflIVoB01YAWgIR0CUi31+iJwbdX2UKGgGR0Bys3s3Q2MsaAdNagFoCEdAlIwc4ku6E3V9lChoBkdAce1d9lVcU2gHTbkBaAhHQJSOZ6v7m+11fZQoaAZHQG64fio86mxoB005AWgIR0CUkOpKSPludX2UKGgGR0ByaHR/mT1TaAdNIAFoCEdAlJEhUedTYXV9lChoBkdAbmdcry1/lWgHTQ4BaAhHQJSROqfe1rt1fZQoaAZHQHEPXZ9NN8FoB015AWgIR0CUkcJD3M6jdX2UKGgGR0BuHTlkpZwGaAdNbgFoCEdAlJMRVZLZjHV9lChoBkdAc4lv+OwPiGgHTUUBaAhHQJSUKFGoaUB1fZQoaAZHQG7mNgjQiRpoB02UAWgIR0CUlK9Zid8RdX2UKGgGR0BxH1S1maphaAdNIwFoCEdAlJUKGlANX3V9lChoBkdAcOoPQv6CUWgHTVgBaAhHQJSVQfxMFll1fZQoaAZHQHEvEE1VHWloB02SAWgIR0CUlYv5xiobdX2UKGgGR0BuSs6BAfMfaAdNfwFoCEdAlJXNXtBv73V9lChoBkdAcZo3SKFZgWgHTewBaAhHQJSWO4MF2V51fZQoaAZHQHLedY4hllNoB01HAWgIR0CUl7k/bCaadWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1794ddff40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1794de8040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1794de80d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1794de8160>", "_build": "<function ActorCriticPolicy._build at 0x7f1794de81f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f1794de8280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1794de8310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1794de83a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1794de8430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1794de84c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1794de8550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1794de85e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1794de50c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687272279649618296, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3OK73hcp+6cyqyO1WqKzh/beo6hX+vtwAAgD8AAIA/mgcTPcOpIrqo3+G4AjDBNHgniLk6MgY4AACAPwAAgD+mXbM9e7iBug6b6LpAhtu1brElu3OoBzoAAIA/AAAAAGYi6TyPjnW6iJUmu69EX7bNJho4EixCOgAAgD8AAIA/ZsLpO+Hchrp7Fsm4j/vYNZuuHrmVp+g3AACAPwAAgD+aVLO8FIqYuvr3Z7pN1QS0EWISO+ehhTkAAIA/AACAPxovNj1c02K6jJkKuePrCbR1mpa4KsoiOAAAgD8AAIA/AEcpPRTyhLpilRU5i/4YNL6r9DrIUS64AACAPwAAgD9mjAm9XEN0ulgsa7k3qdQzt5Y+u/JdhjgAAIA/AACAP9DIgD6EN2w/CEn5vW+/wr45ElA+MOoPvgAAAAAAAAAAmrqyPeGEhLqm3JS58Q0qNdusZLpOZbY4AACAPwAAgD/NRE089lRyuuTrrDrOvC629IA+OzG2IbUAAIA/AACAPzNfvDzDtWG6GMtaumZ2/jLk0xa7svN8OQAAgD8AAIA/5vZVPXvmobpRL8i4oqa8s7czEzhyauY3AACAPwAAgD+zICs9XJdTulr8zjqcad812ZrouoqW87kAAIA/AACAPwBi7DwU6oO6hrr7uTRYXDYGvB278bUPOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVJIXj2i+OMAWyUTegDjAF0lEdAkLd8Y64lQnV9lChoBkdAYVb0UXYUWWgHTegDaAhHQJC7Cb1AZ891fZQoaAZHQGiXIwM6RyRoB03oA2gIR0CQwXvGIbfhdX2UKGgGR0Bkx/Rw6ySnaAdN6ANoCEdAkNMFghKUV3V9lChoBkdAOZI+bExZdWgHTQgBaAhHQJDWMn2Iwdt1fZQoaAZHQGcj2Op84PxoB03oA2gIR0CQ14oqTbFkdX2UKGgGR0BnJossg+yJaAdN6ANoCEdAkNk3cHnln3V9lChoBkdAYdKc9W6shmgHTegDaAhHQJDbPAYYR/V1fZQoaAZHQE++an752yNoB0vEaAhHQJDirZi/fwZ1fZQoaAZHQGKH2fChvitoB03oA2gIR0CQ9DUy57PZdX2UKGgGR0BhnnoTwlSkaAdN6ANoCEdAkPS/yTY/V3V9lChoBkdAaTcuNgjQiWgHTegDaAhHQJD1N/H5rQB1fZQoaAZHQGjy/ReC04RoB03oA2gIR0CQ+TJNCZ4OdX2UKGgGR0Blk61XvH94aAdN6ANoCEdAkPlNUfgaWHV9lChoBkdAYSiOPvKEFmgHTegDaAhHQJD+rkp7TlV1fZQoaAZHQGIOHUc4o7VoB03oA2gIR0CQ/0J4SpR5dX2UKGgGR0Bii05uIhyKaAdN6ANoCEdAkQEwxBVuJnV9lChoBkdAZVtmvGIbfmgHTegDaAhHQJEBla3Zwn91fZQoaAZHQGIfwsXizcBoB03oA2gIR0CRAdXd0q6OdX2UKGgGR0Bn8Mw8GLUDaAdN6ANoCEdAkQbj0+TvA3V9lChoBkdAboc3Ov+wT2gHTdMBaAhHQJEdZ+RYA811fZQoaAZHQGIauoYNy5toB03oA2gIR0CRH/YOlO45dX2UKGgGR0ByXhDCxeLOaAdNxQFoCEdAkSBjoEB8yHV9lChoBkdAZPxjG1hLG2gHTegDaAhHQJEiEBV+7UZ1fZQoaAZHQGdeRh+fAbhoB03oA2gIR0CRJCeYUnG9dX2UKGgGR0BnOnk5p8F7aAdN6ANoCEdAkSYvQWvbGnV9lChoBkdAaCric5Ke1GgHTegDaAhHQJEtwdJaq0d1fZQoaAZHQGK5a6BiCrdoB03oA2gIR0CRQPYoAn2JdX2UKGgGR0BlJ1KVY6n0aAdN6ANoCEdAkUG7UTcqOXV9lChoBkdAZVKXyiEg4mgHTegDaAhHQJFCX0/W1+l1fZQoaAZHQGDSv114gRtoB03oA2gIR0CRSIZUkv9MdX2UKGgGR0Bj2guRLbpNaAdN6ANoCEdAkUiz1K5CnnV9lChoBkdAYhCWSEDhcmgHTegDaAhHQJFQ5zkp7Tl1fZQoaAZHQGgKbDVH4GloB03oA2gIR0CRUzVKwpvxdX2UKGgGR0A67KeCkGiYaAdL9mgIR0CRU179ycTbdX2UKGgGR0Bl+UH8jzI4aAdN6ANoCEdAkVOF18stkHV9lChoBkdAZgUhHskY42gHTegDaAhHQJFYKIJqqOt1fZQoaAZHQGQxzDwYtQNoB03oA2gIR0CRa14CIUJwdX2UKGgGR0BnbRdQfp2VaAdN6ANoCEdAkW3y5Zr57HV9lChoBkdAZMQ79ycTamgHTegDaAhHQJFuWh9LHuJ1fZQoaAZHQGXb7F0gbIdoB03oA2gIR0CRb/YlIEr5dX2UKGgGR0Bl1ZffGdZraAdN6ANoCEdAkXH2/zreInV9lChoBkdAZMo+EAYHgWgHTegDaAhHQJFzwEV32VV1fZQoaAZHQGZbYO2AoXtoB03oA2gIR0CRfCdt2s7udX2UKGgGR0BjcoYNy5qeaAdN6ANoCEdAkX6Xg9/z8XV9lChoBkdAZEjZkCmuT2gHTegDaAhHQJF/R5JK8L91fZQoaAZHQGWYctoSL61oB03oA2gIR0CRlpr/82rGdX2UKGgGR0BeHNUn5SFXaAdN6ANoCEdAkZa3U+cH4XV9lChoBkdAMSRdld1Md2gHS+doCEdAkZuNLcsUZnV9lChoBkdAaM6tkFwDNmgHTegDaAhHQJGc1BJI1+B1fZQoaAZHQGPlXXZoPCloB03oA2gIR0CRntJjDsMRdX2UKGgGR0BkvTuDzyz5aAdN6ANoCEdAkZ72Af+0gXV9lChoBkdAZmDGo73fymgHTegDaAhHQJGfGjrRjSZ1fZQoaAZHQGIpsJIDoyNoB03oA2gIR0CRovRpDeCTdX2UKGgGR0BBUdVWCEpRaAdL4GgIR0CRqcVgQYk3dX2UKGgGR0BhEg5Lh73PaAdN6ANoCEdAkbbRMvh60XV9lChoBkdAY/j/DLr5ZmgHTegDaAhHQJG6Tj5sTFl1fZQoaAZHQGCxkAo5PuZoB03oA2gIR0CRuuaJhvzfdX2UKGgGR0BoeFalk6LgaAdN6ANoCEdAkb1DxXnyNHV9lChoBkdAY2Thx5s0pGgHTegDaAhHQJHAY34sVcl1fZQoaAZHQGe7t6PbO/toB03oA2gIR0CRwz+ZgG8mdX2UKGgGR0BStdnbqQiiaAdL22gIR0CRySsZHd43dX2UKGgGR0Bin6EnLJS0aAdN6ANoCEdAkczNIPK+z3V9lChoBkdAYQDGz8gp0GgHTegDaAhHQJHNYClrM1V1fZQoaAZHQG8rHlfZ26loB02eA2gIR0CRzkN+so2GdX2UKGgGR0BiIwRmK64EaAdN6ANoCEdAkeIjK5kK/nV9lChoBkdAZhyWcBltj2gHTegDaAhHQJHnV1DBuXN1fZQoaAZHQGI6yx7iQ1doB03oA2gIR0CR6LRUWEbpdX2UKGgGR7/wphrnDBM0aAdL62gIR0CR6s1tfoicdX2UKGgGR0Bk1DYPGyX2aAdN6ANoCEdAkerc9fTkQ3V9lChoBkdAYW9tSAH3UWgHTegDaAhHQJHrJOdoWYZ1fZQoaAZHQGOZdaEBbOhoB03oA2gIR0CR8Ky+HrQgdX2UKGgGR0BubTMFEAo5aAdNlgJoCEdAkfe/GyX2NHV9lChoBkdAY0xQeFL39WgHTegDaAhHQJH6akk8ifR1fZQoaAZHQEww5uIhyKhoB0v6aAhHQJH8IWfseGR1fZQoaAZHQGK0e3pfQa9oB03oA2gIR0CSBhazu4PPdX2UKGgGR0BvliKR+z+naAdNZQFoCEdAkggTfFaStHV9lChoBkdAYSv3mmtQsWgHTegDaAhHQJII7AZbY9R1fZQoaAZHQGIdwDeTFERoB03oA2gIR0CSCoFBIFvAdX2UKGgGR0BnlSGzru6VaAdN6ANoCEdAkg6epS75EnV9lChoBkdAZ7Q/dqL0jGgHTegDaAhHQJIUyMLncL11fZQoaAZHQGhXPIfbKzRoB03oA2gIR0CSGGRT0g8sdX2UKGgGR0BhfENSZSeiaAdN6ANoCEdAkhj/qs2ehHV9lChoBkdAYq/laKUFCGgHTegDaAhHQJIw7El3Qld1fZQoaAZHQEgViWE9MbpoB0vlaAhHQJI2QTDfm9x1fZQoaAZHQGj7jPfKp1loB03oA2gIR0CSOGGhVU++dX2UKGgGR0Bi3RSgoPTYaAdN6ANoCEdAkjnOpbUwz3V9lChoBkdAZ2W2tuDSPWgHTegDaAhHQJI7729L6DZ1fZQoaAZHQGguCb+cYqJoB03oA2gIR0CSPE+tbLU1dX2UKGgGR0Bl4sXHim2taAdN6ANoCEdAkkXTwMH8j3V9lChoBkdAZvApy6tknWgHTegDaAhHQJJHkDTz/ZN1fZQoaAZHQDfEnG8274BoB0vnaAhHQJJIFZPl+3J1fZQoaAZHQGTVKm0mdAhoB03oA2gIR0CSSLrOJLuhdX2UKGgGR0BlZF4X40uUaAdN6ANoCEdAklDaufVZtHV9lChoBkdAZCFweeWfLGgHTegDaAhHQJJSi1QZXMh1fZQoaAZHQGgxRqGlANZoB03oA2gIR0CSUzY3eenRdX2UKGgGR0BuBCXnhbW3aAdN0QNoCEdAklN8qvvBrXV9lChoBkdAb7b0voNd7mgHTe8CaAhHQJJUYvnKW9l1fZQoaAZHQGZCVuR9w3poB03oA2gIR0CSV+jvuw5edX2UKGgGR0Bn7diWmgrZaAdN6ANoCEdAkmFmUwBYFXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 146747
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5e8191e897119054224fbe4ac98e85c056b42d3618c225d8207693d258ac8372
|
3 |
size 146747
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -26,12 +26,12 @@
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -45,7 +45,7 @@
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1794ddff40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1794de8040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1794de80d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1794de8160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1794de81f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1794de8280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1794de8310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1794de83a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1794de8430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1794de84c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1794de8550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1794de85e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f1794de50c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1687272279649618296,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3OK73hcp+6cyqyO1WqKzh/beo6hX+vtwAAgD8AAIA/mgcTPcOpIrqo3+G4AjDBNHgniLk6MgY4AACAPwAAgD+mXbM9e7iBug6b6LpAhtu1brElu3OoBzoAAIA/AAAAAGYi6TyPjnW6iJUmu69EX7bNJho4EixCOgAAgD8AAIA/ZsLpO+Hchrp7Fsm4j/vYNZuuHrmVp+g3AACAPwAAgD+aVLO8FIqYuvr3Z7pN1QS0EWISO+ehhTkAAIA/AACAPxovNj1c02K6jJkKuePrCbR1mpa4KsoiOAAAgD8AAIA/AEcpPRTyhLpilRU5i/4YNL6r9DrIUS64AACAPwAAgD9mjAm9XEN0ulgsa7k3qdQzt5Y+u/JdhjgAAIA/AACAP9DIgD6EN2w/CEn5vW+/wr45ElA+MOoPvgAAAAAAAAAAmrqyPeGEhLqm3JS58Q0qNdusZLpOZbY4AACAPwAAgD/NRE089lRyuuTrrDrOvC629IA+OzG2IbUAAIA/AACAPzNfvDzDtWG6GMtaumZ2/jLk0xa7svN8OQAAgD8AAIA/5vZVPXvmobpRL8i4oqa8s7czEzhyauY3AACAPwAAgD+zICs9XJdTulr8zjqcad812ZrouoqW87kAAIA/AACAPwBi7DwU6oO6hrr7uTRYXDYGvB278bUPOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVJIXj2i+OMAWyUTegDjAF0lEdAkLd8Y64lQnV9lChoBkdAYVb0UXYUWWgHTegDaAhHQJC7Cb1AZ891fZQoaAZHQGiXIwM6RyRoB03oA2gIR0CQwXvGIbfhdX2UKGgGR0Bkx/Rw6ySnaAdN6ANoCEdAkNMFghKUV3V9lChoBkdAOZI+bExZdWgHTQgBaAhHQJDWMn2Iwdt1fZQoaAZHQGcj2Op84PxoB03oA2gIR0CQ14oqTbFkdX2UKGgGR0BnJossg+yJaAdN6ANoCEdAkNk3cHnln3V9lChoBkdAYdKc9W6shmgHTegDaAhHQJDbPAYYR/V1fZQoaAZHQE++an752yNoB0vEaAhHQJDirZi/fwZ1fZQoaAZHQGKH2fChvitoB03oA2gIR0CQ9DUy57PZdX2UKGgGR0BhnnoTwlSkaAdN6ANoCEdAkPS/yTY/V3V9lChoBkdAaTcuNgjQiWgHTegDaAhHQJD1N/H5rQB1fZQoaAZHQGjy/ReC04RoB03oA2gIR0CQ+TJNCZ4OdX2UKGgGR0Blk61XvH94aAdN6ANoCEdAkPlNUfgaWHV9lChoBkdAYSiOPvKEFmgHTegDaAhHQJD+rkp7TlV1fZQoaAZHQGIOHUc4o7VoB03oA2gIR0CQ/0J4SpR5dX2UKGgGR0Bii05uIhyKaAdN6ANoCEdAkQEwxBVuJnV9lChoBkdAZVtmvGIbfmgHTegDaAhHQJEBla3Zwn91fZQoaAZHQGIfwsXizcBoB03oA2gIR0CRAdXd0q6OdX2UKGgGR0Bn8Mw8GLUDaAdN6ANoCEdAkQbj0+TvA3V9lChoBkdAboc3Ov+wT2gHTdMBaAhHQJEdZ+RYA811fZQoaAZHQGIauoYNy5toB03oA2gIR0CRH/YOlO45dX2UKGgGR0ByXhDCxeLOaAdNxQFoCEdAkSBjoEB8yHV9lChoBkdAZPxjG1hLG2gHTegDaAhHQJEiEBV+7UZ1fZQoaAZHQGdeRh+fAbhoB03oA2gIR0CRJCeYUnG9dX2UKGgGR0BnOnk5p8F7aAdN6ANoCEdAkSYvQWvbGnV9lChoBkdAaCric5Ke1GgHTegDaAhHQJEtwdJaq0d1fZQoaAZHQGK5a6BiCrdoB03oA2gIR0CRQPYoAn2JdX2UKGgGR0BlJ1KVY6n0aAdN6ANoCEdAkUG7UTcqOXV9lChoBkdAZVKXyiEg4mgHTegDaAhHQJFCX0/W1+l1fZQoaAZHQGDSv114gRtoB03oA2gIR0CRSIZUkv9MdX2UKGgGR0Bj2guRLbpNaAdN6ANoCEdAkUiz1K5CnnV9lChoBkdAYhCWSEDhcmgHTegDaAhHQJFQ5zkp7Tl1fZQoaAZHQGgKbDVH4GloB03oA2gIR0CRUzVKwpvxdX2UKGgGR0A67KeCkGiYaAdL9mgIR0CRU179ycTbdX2UKGgGR0Bl+UH8jzI4aAdN6ANoCEdAkVOF18stkHV9lChoBkdAZgUhHskY42gHTegDaAhHQJFYKIJqqOt1fZQoaAZHQGQxzDwYtQNoB03oA2gIR0CRa14CIUJwdX2UKGgGR0BnbRdQfp2VaAdN6ANoCEdAkW3y5Zr57HV9lChoBkdAZMQ79ycTamgHTegDaAhHQJFuWh9LHuJ1fZQoaAZHQGXb7F0gbIdoB03oA2gIR0CRb/YlIEr5dX2UKGgGR0Bl1ZffGdZraAdN6ANoCEdAkXH2/zreInV9lChoBkdAZMo+EAYHgWgHTegDaAhHQJFzwEV32VV1fZQoaAZHQGZbYO2AoXtoB03oA2gIR0CRfCdt2s7udX2UKGgGR0BjcoYNy5qeaAdN6ANoCEdAkX6Xg9/z8XV9lChoBkdAZEjZkCmuT2gHTegDaAhHQJF/R5JK8L91fZQoaAZHQGWYctoSL61oB03oA2gIR0CRlpr/82rGdX2UKGgGR0BeHNUn5SFXaAdN6ANoCEdAkZa3U+cH4XV9lChoBkdAMSRdld1Md2gHS+doCEdAkZuNLcsUZnV9lChoBkdAaM6tkFwDNmgHTegDaAhHQJGc1BJI1+B1fZQoaAZHQGPlXXZoPCloB03oA2gIR0CRntJjDsMRdX2UKGgGR0BkvTuDzyz5aAdN6ANoCEdAkZ72Af+0gXV9lChoBkdAZmDGo73fymgHTegDaAhHQJGfGjrRjSZ1fZQoaAZHQGIpsJIDoyNoB03oA2gIR0CRovRpDeCTdX2UKGgGR0BBUdVWCEpRaAdL4GgIR0CRqcVgQYk3dX2UKGgGR0BhEg5Lh73PaAdN6ANoCEdAkbbRMvh60XV9lChoBkdAY/j/DLr5ZmgHTegDaAhHQJG6Tj5sTFl1fZQoaAZHQGCxkAo5PuZoB03oA2gIR0CRuuaJhvzfdX2UKGgGR0BoeFalk6LgaAdN6ANoCEdAkb1DxXnyNHV9lChoBkdAY2Thx5s0pGgHTegDaAhHQJHAY34sVcl1fZQoaAZHQGe7t6PbO/toB03oA2gIR0CRwz+ZgG8mdX2UKGgGR0BStdnbqQiiaAdL22gIR0CRySsZHd43dX2UKGgGR0Bin6EnLJS0aAdN6ANoCEdAkczNIPK+z3V9lChoBkdAYQDGz8gp0GgHTegDaAhHQJHNYClrM1V1fZQoaAZHQG8rHlfZ26loB02eA2gIR0CRzkN+so2GdX2UKGgGR0BiIwRmK64EaAdN6ANoCEdAkeIjK5kK/nV9lChoBkdAZhyWcBltj2gHTegDaAhHQJHnV1DBuXN1fZQoaAZHQGI6yx7iQ1doB03oA2gIR0CR6LRUWEbpdX2UKGgGR7/wphrnDBM0aAdL62gIR0CR6s1tfoicdX2UKGgGR0Bk1DYPGyX2aAdN6ANoCEdAkerc9fTkQ3V9lChoBkdAYW9tSAH3UWgHTegDaAhHQJHrJOdoWYZ1fZQoaAZHQGOZdaEBbOhoB03oA2gIR0CR8Ky+HrQgdX2UKGgGR0BubTMFEAo5aAdNlgJoCEdAkfe/GyX2NHV9lChoBkdAY0xQeFL39WgHTegDaAhHQJH6akk8ifR1fZQoaAZHQEww5uIhyKhoB0v6aAhHQJH8IWfseGR1fZQoaAZHQGK0e3pfQa9oB03oA2gIR0CSBhazu4PPdX2UKGgGR0BvliKR+z+naAdNZQFoCEdAkggTfFaStHV9lChoBkdAYSv3mmtQsWgHTegDaAhHQJII7AZbY9R1fZQoaAZHQGIdwDeTFERoB03oA2gIR0CSCoFBIFvAdX2UKGgGR0BnlSGzru6VaAdN6ANoCEdAkg6epS75EnV9lChoBkdAZ7Q/dqL0jGgHTegDaAhHQJIUyMLncL11fZQoaAZHQGhXPIfbKzRoB03oA2gIR0CSGGRT0g8sdX2UKGgGR0BhfENSZSeiaAdN6ANoCEdAkhj/qs2ehHV9lChoBkdAYq/laKUFCGgHTegDaAhHQJIw7El3Qld1fZQoaAZHQEgViWE9MbpoB0vlaAhHQJI2QTDfm9x1fZQoaAZHQGj7jPfKp1loB03oA2gIR0CSOGGhVU++dX2UKGgGR0Bi3RSgoPTYaAdN6ANoCEdAkjnOpbUwz3V9lChoBkdAZ2W2tuDSPWgHTegDaAhHQJI7729L6DZ1fZQoaAZHQGguCb+cYqJoB03oA2gIR0CSPE+tbLU1dX2UKGgGR0Bl4sXHim2taAdN6ANoCEdAkkXTwMH8j3V9lChoBkdAZvApy6tknWgHTegDaAhHQJJHkDTz/ZN1fZQoaAZHQDfEnG8274BoB0vnaAhHQJJIFZPl+3J1fZQoaAZHQGTVKm0mdAhoB03oA2gIR0CSSLrOJLuhdX2UKGgGR0BlZF4X40uUaAdN6ANoCEdAklDaufVZtHV9lChoBkdAZCFweeWfLGgHTegDaAhHQJJSi1QZXMh1fZQoaAZHQGgxRqGlANZoB03oA2gIR0CSUzY3eenRdX2UKGgGR0BuBCXnhbW3aAdN0QNoCEdAklN8qvvBrXV9lChoBkdAb7b0voNd7mgHTe8CaAhHQJJUYvnKW9l1fZQoaAZHQGZCVuR9w3poB03oA2gIR0CSV+jvuw5edX2UKGgGR0Bn7diWmgrZaAdN6ANoCEdAkmFmUwBYFXVlLg=="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8be52c201ae8cf2838a28446724c9ffa129520a305b778868275208dacb4b6f0
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43329
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:733400ec94de66c2c68cc2aed0210521304bf9ade677b641db1b920765e4491a
|
3 |
size 43329
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
-
- Python: 3.10.
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
|
|
1 |
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 2.0.0a5
|
4 |
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.08303187006214, "std_reward": 20.874692142378635, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-20T15:07:32.072066"}
|