{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f1794de50c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687272279649618296, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3OK73hcp+6cyqyO1WqKzh/beo6hX+vtwAAgD8AAIA/mgcTPcOpIrqo3+G4AjDBNHgniLk6MgY4AACAPwAAgD+mXbM9e7iBug6b6LpAhtu1brElu3OoBzoAAIA/AAAAAGYi6TyPjnW6iJUmu69EX7bNJho4EixCOgAAgD8AAIA/ZsLpO+Hchrp7Fsm4j/vYNZuuHrmVp+g3AACAPwAAgD+aVLO8FIqYuvr3Z7pN1QS0EWISO+ehhTkAAIA/AACAPxovNj1c02K6jJkKuePrCbR1mpa4KsoiOAAAgD8AAIA/AEcpPRTyhLpilRU5i/4YNL6r9DrIUS64AACAPwAAgD9mjAm9XEN0ulgsa7k3qdQzt5Y+u/JdhjgAAIA/AACAP9DIgD6EN2w/CEn5vW+/wr45ElA+MOoPvgAAAAAAAAAAmrqyPeGEhLqm3JS58Q0qNdusZLpOZbY4AACAPwAAgD/NRE089lRyuuTrrDrOvC629IA+OzG2IbUAAIA/AACAPzNfvDzDtWG6GMtaumZ2/jLk0xa7svN8OQAAgD8AAIA/5vZVPXvmobpRL8i4oqa8s7czEzhyauY3AACAPwAAgD+zICs9XJdTulr8zjqcad812ZrouoqW87kAAIA/AACAPwBi7DwU6oO6hrr7uTRYXDYGvB278bUPOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGVJIXj2i+OMAWyUTegDjAF0lEdAkLd8Y64lQnV9lChoBkdAYVb0UXYUWWgHTegDaAhHQJC7Cb1AZ891fZQoaAZHQGiXIwM6RyRoB03oA2gIR0CQwXvGIbfhdX2UKGgGR0Bkx/Rw6ySnaAdN6ANoCEdAkNMFghKUV3V9lChoBkdAOZI+bExZdWgHTQgBaAhHQJDWMn2Iwdt1fZQoaAZHQGcj2Op84PxoB03oA2gIR0CQ14oqTbFkdX2UKGgGR0BnJossg+yJaAdN6ANoCEdAkNk3cHnln3V9lChoBkdAYdKc9W6shmgHTegDaAhHQJDbPAYYR/V1fZQoaAZHQE++an752yNoB0vEaAhHQJDirZi/fwZ1fZQoaAZHQGKH2fChvitoB03oA2gIR0CQ9DUy57PZdX2UKGgGR0BhnnoTwlSkaAdN6ANoCEdAkPS/yTY/V3V9lChoBkdAaTcuNgjQiWgHTegDaAhHQJD1N/H5rQB1fZQoaAZHQGjy/ReC04RoB03oA2gIR0CQ+TJNCZ4OdX2UKGgGR0Blk61XvH94aAdN6ANoCEdAkPlNUfgaWHV9lChoBkdAYSiOPvKEFmgHTegDaAhHQJD+rkp7TlV1fZQoaAZHQGIOHUc4o7VoB03oA2gIR0CQ/0J4SpR5dX2UKGgGR0Bii05uIhyKaAdN6ANoCEdAkQEwxBVuJnV9lChoBkdAZVtmvGIbfmgHTegDaAhHQJEBla3Zwn91fZQoaAZHQGIfwsXizcBoB03oA2gIR0CRAdXd0q6OdX2UKGgGR0Bn8Mw8GLUDaAdN6ANoCEdAkQbj0+TvA3V9lChoBkdAboc3Ov+wT2gHTdMBaAhHQJEdZ+RYA811fZQoaAZHQGIauoYNy5toB03oA2gIR0CRH/YOlO45dX2UKGgGR0ByXhDCxeLOaAdNxQFoCEdAkSBjoEB8yHV9lChoBkdAZPxjG1hLG2gHTegDaAhHQJEiEBV+7UZ1fZQoaAZHQGdeRh+fAbhoB03oA2gIR0CRJCeYUnG9dX2UKGgGR0BnOnk5p8F7aAdN6ANoCEdAkSYvQWvbGnV9lChoBkdAaCric5Ke1GgHTegDaAhHQJEtwdJaq0d1fZQoaAZHQGK5a6BiCrdoB03oA2gIR0CRQPYoAn2JdX2UKGgGR0BlJ1KVY6n0aAdN6ANoCEdAkUG7UTcqOXV9lChoBkdAZVKXyiEg4mgHTegDaAhHQJFCX0/W1+l1fZQoaAZHQGDSv114gRtoB03oA2gIR0CRSIZUkv9MdX2UKGgGR0Bj2guRLbpNaAdN6ANoCEdAkUiz1K5CnnV9lChoBkdAYhCWSEDhcmgHTegDaAhHQJFQ5zkp7Tl1fZQoaAZHQGgKbDVH4GloB03oA2gIR0CRUzVKwpvxdX2UKGgGR0A67KeCkGiYaAdL9mgIR0CRU179ycTbdX2UKGgGR0Bl+UH8jzI4aAdN6ANoCEdAkVOF18stkHV9lChoBkdAZgUhHskY42gHTegDaAhHQJFYKIJqqOt1fZQoaAZHQGQxzDwYtQNoB03oA2gIR0CRa14CIUJwdX2UKGgGR0BnbRdQfp2VaAdN6ANoCEdAkW3y5Zr57HV9lChoBkdAZMQ79ycTamgHTegDaAhHQJFuWh9LHuJ1fZQoaAZHQGXb7F0gbIdoB03oA2gIR0CRb/YlIEr5dX2UKGgGR0Bl1ZffGdZraAdN6ANoCEdAkXH2/zreInV9lChoBkdAZMo+EAYHgWgHTegDaAhHQJFzwEV32VV1fZQoaAZHQGZbYO2AoXtoB03oA2gIR0CRfCdt2s7udX2UKGgGR0BjcoYNy5qeaAdN6ANoCEdAkX6Xg9/z8XV9lChoBkdAZEjZkCmuT2gHTegDaAhHQJF/R5JK8L91fZQoaAZHQGWYctoSL61oB03oA2gIR0CRlpr/82rGdX2UKGgGR0BeHNUn5SFXaAdN6ANoCEdAkZa3U+cH4XV9lChoBkdAMSRdld1Md2gHS+doCEdAkZuNLcsUZnV9lChoBkdAaM6tkFwDNmgHTegDaAhHQJGc1BJI1+B1fZQoaAZHQGPlXXZoPCloB03oA2gIR0CRntJjDsMRdX2UKGgGR0BkvTuDzyz5aAdN6ANoCEdAkZ72Af+0gXV9lChoBkdAZmDGo73fymgHTegDaAhHQJGfGjrRjSZ1fZQoaAZHQGIpsJIDoyNoB03oA2gIR0CRovRpDeCTdX2UKGgGR0BBUdVWCEpRaAdL4GgIR0CRqcVgQYk3dX2UKGgGR0BhEg5Lh73PaAdN6ANoCEdAkbbRMvh60XV9lChoBkdAY/j/DLr5ZmgHTegDaAhHQJG6Tj5sTFl1fZQoaAZHQGCxkAo5PuZoB03oA2gIR0CRuuaJhvzfdX2UKGgGR0BoeFalk6LgaAdN6ANoCEdAkb1DxXnyNHV9lChoBkdAY2Thx5s0pGgHTegDaAhHQJHAY34sVcl1fZQoaAZHQGe7t6PbO/toB03oA2gIR0CRwz+ZgG8mdX2UKGgGR0BStdnbqQiiaAdL22gIR0CRySsZHd43dX2UKGgGR0Bin6EnLJS0aAdN6ANoCEdAkczNIPK+z3V9lChoBkdAYQDGz8gp0GgHTegDaAhHQJHNYClrM1V1fZQoaAZHQG8rHlfZ26loB02eA2gIR0CRzkN+so2GdX2UKGgGR0BiIwRmK64EaAdN6ANoCEdAkeIjK5kK/nV9lChoBkdAZhyWcBltj2gHTegDaAhHQJHnV1DBuXN1fZQoaAZHQGI6yx7iQ1doB03oA2gIR0CR6LRUWEbpdX2UKGgGR7/wphrnDBM0aAdL62gIR0CR6s1tfoicdX2UKGgGR0Bk1DYPGyX2aAdN6ANoCEdAkerc9fTkQ3V9lChoBkdAYW9tSAH3UWgHTegDaAhHQJHrJOdoWYZ1fZQoaAZHQGOZdaEBbOhoB03oA2gIR0CR8Ky+HrQgdX2UKGgGR0BubTMFEAo5aAdNlgJoCEdAkfe/GyX2NHV9lChoBkdAY0xQeFL39WgHTegDaAhHQJH6akk8ifR1fZQoaAZHQEww5uIhyKhoB0v6aAhHQJH8IWfseGR1fZQoaAZHQGK0e3pfQa9oB03oA2gIR0CSBhazu4PPdX2UKGgGR0BvliKR+z+naAdNZQFoCEdAkggTfFaStHV9lChoBkdAYSv3mmtQsWgHTegDaAhHQJII7AZbY9R1fZQoaAZHQGIdwDeTFERoB03oA2gIR0CSCoFBIFvAdX2UKGgGR0BnlSGzru6VaAdN6ANoCEdAkg6epS75EnV9lChoBkdAZ7Q/dqL0jGgHTegDaAhHQJIUyMLncL11fZQoaAZHQGhXPIfbKzRoB03oA2gIR0CSGGRT0g8sdX2UKGgGR0BhfENSZSeiaAdN6ANoCEdAkhj/qs2ehHV9lChoBkdAYq/laKUFCGgHTegDaAhHQJIw7El3Qld1fZQoaAZHQEgViWE9MbpoB0vlaAhHQJI2QTDfm9x1fZQoaAZHQGj7jPfKp1loB03oA2gIR0CSOGGhVU++dX2UKGgGR0Bi3RSgoPTYaAdN6ANoCEdAkjnOpbUwz3V9lChoBkdAZ2W2tuDSPWgHTegDaAhHQJI7729L6DZ1fZQoaAZHQGguCb+cYqJoB03oA2gIR0CSPE+tbLU1dX2UKGgGR0Bl4sXHim2taAdN6ANoCEdAkkXTwMH8j3V9lChoBkdAZvApy6tknWgHTegDaAhHQJJHkDTz/ZN1fZQoaAZHQDfEnG8274BoB0vnaAhHQJJIFZPl+3J1fZQoaAZHQGTVKm0mdAhoB03oA2gIR0CSSLrOJLuhdX2UKGgGR0BlZF4X40uUaAdN6ANoCEdAklDaufVZtHV9lChoBkdAZCFweeWfLGgHTegDaAhHQJJSi1QZXMh1fZQoaAZHQGgxRqGlANZoB03oA2gIR0CSUzY3eenRdX2UKGgGR0BuBCXnhbW3aAdN0QNoCEdAklN8qvvBrXV9lChoBkdAb7b0voNd7mgHTe8CaAhHQJJUYvnKW9l1fZQoaAZHQGZCVuR9w3poB03oA2gIR0CSV+jvuw5edX2UKGgGR0Bn7diWmgrZaAdN6ANoCEdAkmFmUwBYFXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}