Cohee commited on
Commit
14a930f
·
1 Parent(s): 612421b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md CHANGED
@@ -1,3 +1,48 @@
1
  ---
 
 
 
 
 
 
 
2
  license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ thumbnail: https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4
5
+ tags:
6
+ - text-classification
7
+ - emotion
8
+ - pytorch
9
  license: apache-2.0
10
+ datasets:
11
+ - emotion
12
+ metrics:
13
+ - accuracy
14
  ---
15
+
16
+ [nateraw/bert-base-uncased-emotion](https://huggingface.co/nateraw/bert-base-uncased-emotion) converted to ONNX and quantized using optimum.
17
+
18
+ ---
19
+
20
+ # bert-base-uncased-emotion
21
+
22
+ ## Model description
23
+
24
+ `bert-base-uncased` finetuned on the emotion dataset using PyTorch Lightning. Sequence length 128, learning rate 2e-5, batch size 32, 2 GPUs, 4 epochs.
25
+
26
+ For more details, please see, [the emotion dataset on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion).
27
+
28
+
29
+ #### Limitations and bias
30
+
31
+ - Not the best model, but it works in a pinch I guess...
32
+ - Code not available as I just hacked this together.
33
+ - [Follow me on github](https://github.com/nateraw) to get notified when code is made available.
34
+
35
+ ## Training data
36
+
37
+ Data came from HuggingFace's `datasets` package. The data can be viewed [on nlp viewer](https://huggingface.co/nlp/viewer/?dataset=emotion).
38
+
39
+
40
+ ## Training procedure
41
+ ...
42
+
43
+ ## Eval results
44
+
45
+ val_acc - 0.931 (useless, as this should be precision/recall/f1)
46
+
47
+ The score was calculated using PyTorch Lightning metrics.
48
+