File size: 2,056 Bytes
df732d8 8ed1977 df732d8 8ed1977 df732d8 8ed1977 df732d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
base_model: mdraw/german-news-sentiment-bert
tags:
- generated_from_trainer
model-index:
- name: german-party-sentiment-bert-complete-synonyms-5e-5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# german-party-sentiment-bert-complete-synonyms-5e-5
This model is a fine-tuned version of [mdraw/german-news-sentiment-bert](https://huggingface.co/mdraw/german-news-sentiment-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8769
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 120
- num_epochs: 14
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9596 | 1.0 | 70 | 0.9676 |
| 0.9122 | 2.0 | 140 | 0.8769 |
| 0.7382 | 3.0 | 210 | 0.9984 |
| 0.5708 | 4.0 | 280 | 1.1080 |
| 0.3579 | 5.0 | 350 | 1.4137 |
| 0.3066 | 6.0 | 420 | 1.8204 |
| 0.1716 | 7.0 | 490 | 1.8167 |
| 0.1974 | 8.0 | 560 | 2.1479 |
| 0.1164 | 9.0 | 630 | 2.3899 |
| 0.0878 | 10.0 | 700 | 2.5266 |
| 0.07 | 11.0 | 770 | 2.7014 |
| 0.0604 | 12.0 | 840 | 2.7048 |
| 0.0278 | 13.0 | 910 | 2.8119 |
| 0.0376 | 14.0 | 980 | 2.8799 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Tokenizers 0.15.1
|