Conrad747 commited on
Commit
5b9fe54
1 Parent(s): ae8b48e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +98 -0
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - lg-ner
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: luganda-ner-v2
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: lg-ner
20
+ type: lg-ner
21
+ config: lug
22
+ split: test
23
+ args: lug
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9352766798418972
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9288518155053974
31
+ - name: F1
32
+ type: f1
33
+ value: 0.93205317577548
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9817219554779573
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # luganda-ner-v2
43
+
44
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0955
47
+ - Precision: 0.9353
48
+ - Recall: 0.9289
49
+ - F1: 0.9321
50
+ - Accuracy: 0.9817
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 10
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.5913 | 1.0 | 609 | 0.2667 | 0.6740 | 0.7620 | 0.7153 | 0.9336 |
82
+ | 0.2461 | 2.0 | 1218 | 0.1704 | 0.7981 | 0.8437 | 0.8203 | 0.9562 |
83
+ | 0.1784 | 3.0 | 1827 | 0.1273 | 0.8578 | 0.8943 | 0.8757 | 0.9669 |
84
+ | 0.1337 | 4.0 | 2436 | 0.1048 | 0.8731 | 0.9132 | 0.8927 | 0.9726 |
85
+ | 0.0868 | 5.0 | 3045 | 0.0988 | 0.9129 | 0.9178 | 0.9153 | 0.9760 |
86
+ | 0.0736 | 6.0 | 3654 | 0.0961 | 0.9146 | 0.9225 | 0.9185 | 0.9781 |
87
+ | 0.0602 | 7.0 | 4263 | 0.0877 | 0.9270 | 0.9222 | 0.9246 | 0.9798 |
88
+ | 0.0566 | 8.0 | 4872 | 0.0948 | 0.9281 | 0.9222 | 0.9252 | 0.9807 |
89
+ | 0.0514 | 9.0 | 5481 | 0.0930 | 0.9349 | 0.9271 | 0.9310 | 0.9817 |
90
+ | 0.0395 | 10.0 | 6090 | 0.0955 | 0.9353 | 0.9289 | 0.9321 | 0.9817 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.26.1
96
+ - Pytorch 1.13.1+cu116
97
+ - Datasets 2.10.1
98
+ - Tokenizers 0.13.2