update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- lg-ner
|
7 |
+
metrics:
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
- accuracy
|
12 |
+
model-index:
|
13 |
+
- name: luganda-ner-v2
|
14 |
+
results:
|
15 |
+
- task:
|
16 |
+
name: Token Classification
|
17 |
+
type: token-classification
|
18 |
+
dataset:
|
19 |
+
name: lg-ner
|
20 |
+
type: lg-ner
|
21 |
+
config: lug
|
22 |
+
split: test
|
23 |
+
args: lug
|
24 |
+
metrics:
|
25 |
+
- name: Precision
|
26 |
+
type: precision
|
27 |
+
value: 0.9352766798418972
|
28 |
+
- name: Recall
|
29 |
+
type: recall
|
30 |
+
value: 0.9288518155053974
|
31 |
+
- name: F1
|
32 |
+
type: f1
|
33 |
+
value: 0.93205317577548
|
34 |
+
- name: Accuracy
|
35 |
+
type: accuracy
|
36 |
+
value: 0.9817219554779573
|
37 |
+
---
|
38 |
+
|
39 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
40 |
+
should probably proofread and complete it, then remove this comment. -->
|
41 |
+
|
42 |
+
# luganda-ner-v2
|
43 |
+
|
44 |
+
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset.
|
45 |
+
It achieves the following results on the evaluation set:
|
46 |
+
- Loss: 0.0955
|
47 |
+
- Precision: 0.9353
|
48 |
+
- Recall: 0.9289
|
49 |
+
- F1: 0.9321
|
50 |
+
- Accuracy: 0.9817
|
51 |
+
|
52 |
+
## Model description
|
53 |
+
|
54 |
+
More information needed
|
55 |
+
|
56 |
+
## Intended uses & limitations
|
57 |
+
|
58 |
+
More information needed
|
59 |
+
|
60 |
+
## Training and evaluation data
|
61 |
+
|
62 |
+
More information needed
|
63 |
+
|
64 |
+
## Training procedure
|
65 |
+
|
66 |
+
### Training hyperparameters
|
67 |
+
|
68 |
+
The following hyperparameters were used during training:
|
69 |
+
- learning_rate: 2e-05
|
70 |
+
- train_batch_size: 8
|
71 |
+
- eval_batch_size: 8
|
72 |
+
- seed: 42
|
73 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
74 |
+
- lr_scheduler_type: linear
|
75 |
+
- num_epochs: 10
|
76 |
+
|
77 |
+
### Training results
|
78 |
+
|
79 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
80 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
81 |
+
| 0.5913 | 1.0 | 609 | 0.2667 | 0.6740 | 0.7620 | 0.7153 | 0.9336 |
|
82 |
+
| 0.2461 | 2.0 | 1218 | 0.1704 | 0.7981 | 0.8437 | 0.8203 | 0.9562 |
|
83 |
+
| 0.1784 | 3.0 | 1827 | 0.1273 | 0.8578 | 0.8943 | 0.8757 | 0.9669 |
|
84 |
+
| 0.1337 | 4.0 | 2436 | 0.1048 | 0.8731 | 0.9132 | 0.8927 | 0.9726 |
|
85 |
+
| 0.0868 | 5.0 | 3045 | 0.0988 | 0.9129 | 0.9178 | 0.9153 | 0.9760 |
|
86 |
+
| 0.0736 | 6.0 | 3654 | 0.0961 | 0.9146 | 0.9225 | 0.9185 | 0.9781 |
|
87 |
+
| 0.0602 | 7.0 | 4263 | 0.0877 | 0.9270 | 0.9222 | 0.9246 | 0.9798 |
|
88 |
+
| 0.0566 | 8.0 | 4872 | 0.0948 | 0.9281 | 0.9222 | 0.9252 | 0.9807 |
|
89 |
+
| 0.0514 | 9.0 | 5481 | 0.0930 | 0.9349 | 0.9271 | 0.9310 | 0.9817 |
|
90 |
+
| 0.0395 | 10.0 | 6090 | 0.0955 | 0.9353 | 0.9289 | 0.9321 | 0.9817 |
|
91 |
+
|
92 |
+
|
93 |
+
### Framework versions
|
94 |
+
|
95 |
+
- Transformers 4.26.1
|
96 |
+
- Pytorch 1.13.1+cu116
|
97 |
+
- Datasets 2.10.1
|
98 |
+
- Tokenizers 0.13.2
|