Conrad747 commited on
Commit
ffc34d4
1 Parent(s): a00992e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -21
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.79182156133829
28
  - name: Recall
29
  type: recall
30
- value: 0.7842415316642121
31
  - name: F1
32
  type: f1
33
- value: 0.788013318534961
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9559346774929295
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.3199
47
- - Precision: 0.7918
48
- - Recall: 0.7842
49
- - F1: 0.7880
50
- - Accuracy: 0.9559
51
 
52
  ## Model description
53
 
@@ -78,21 +78,21 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 261 | 0.2380 | 0.7942 | 0.7106 | 0.7501 | 0.9526 |
82
- | 0.0954 | 2.0 | 522 | 0.2345 | 0.7954 | 0.7872 | 0.7913 | 0.9558 |
83
- | 0.0954 | 3.0 | 783 | 0.2560 | 0.8168 | 0.7518 | 0.7830 | 0.9555 |
84
- | 0.0562 | 4.0 | 1044 | 0.2815 | 0.7261 | 0.7791 | 0.7517 | 0.9477 |
85
- | 0.0562 | 5.0 | 1305 | 0.2738 | 0.7744 | 0.8012 | 0.7875 | 0.9566 |
86
- | 0.0345 | 6.0 | 1566 | 0.2951 | 0.8083 | 0.7732 | 0.7904 | 0.9556 |
87
- | 0.0345 | 7.0 | 1827 | 0.3026 | 0.7741 | 0.7872 | 0.7806 | 0.9547 |
88
- | 0.0215 | 8.0 | 2088 | 0.3062 | 0.8159 | 0.7636 | 0.7889 | 0.9563 |
89
- | 0.0215 | 9.0 | 2349 | 0.3157 | 0.7959 | 0.7813 | 0.7886 | 0.9563 |
90
- | 0.017 | 10.0 | 2610 | 0.3199 | 0.7918 | 0.7842 | 0.7880 | 0.9559 |
91
 
92
 
93
  ### Framework versions
94
 
95
- - Transformers 4.26.1
96
  - Pytorch 1.13.1+cu116
97
- - Datasets 2.10.1
98
  - Tokenizers 0.13.2
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.7704421562689279
28
  - name: Recall
29
  type: recall
30
+ value: 0.7695099818511797
31
  - name: F1
32
  type: f1
33
+ value: 0.7699757869249395
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9434371807967313
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the lg-ner dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2829
47
+ - Precision: 0.7704
48
+ - Recall: 0.7695
49
+ - F1: 0.7700
50
+ - Accuracy: 0.9434
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 261 | 0.4835 | 0.5191 | 0.3037 | 0.3832 | 0.8719 |
82
+ | 0.5738 | 2.0 | 522 | 0.3454 | 0.7288 | 0.5203 | 0.6071 | 0.9117 |
83
+ | 0.5738 | 3.0 | 783 | 0.2956 | 0.7752 | 0.6612 | 0.7137 | 0.9235 |
84
+ | 0.2549 | 4.0 | 1044 | 0.2791 | 0.7537 | 0.6848 | 0.7176 | 0.9258 |
85
+ | 0.2549 | 5.0 | 1305 | 0.2801 | 0.7530 | 0.7211 | 0.7367 | 0.9335 |
86
+ | 0.1566 | 6.0 | 1566 | 0.2675 | 0.7956 | 0.7229 | 0.7575 | 0.9393 |
87
+ | 0.1566 | 7.0 | 1827 | 0.2610 | 0.7744 | 0.7350 | 0.7542 | 0.9423 |
88
+ | 0.1054 | 8.0 | 2088 | 0.2731 | 0.7614 | 0.7586 | 0.7600 | 0.9423 |
89
+ | 0.1054 | 9.0 | 2349 | 0.2763 | 0.7794 | 0.7526 | 0.7658 | 0.9434 |
90
+ | 0.0771 | 10.0 | 2610 | 0.2829 | 0.7704 | 0.7695 | 0.7700 | 0.9434 |
91
 
92
 
93
  ### Framework versions
94
 
95
+ - Transformers 4.27.4
96
  - Pytorch 1.13.1+cu116
97
+ - Datasets 2.11.0
98
  - Tokenizers 0.13.2