File size: 3,915 Bytes
cf85519
 
 
 
2e3ee73
cf85519
9d5a867
cf85519
 
 
 
 
 
65ef3fa
8d689d6
81530b7
 
73b2f79
6a076d6
cf85519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73b2f79
6a076d6
 
cf85519
5706903
cf85519
6a076d6
cf85519
 
 
 
539e169
cf85519
 
 
539e169
cf85519
 
 
539e169
cf85519
 
 
539e169
 
 
cf85519
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e3ee73
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
license: apache-2.0
tags:
- generated_from_trainer
base_model: leveldevai/TurdusBeagle-7B
model-index:
- name: Metabird-7B
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->



![Metabird](https://cdn-uploads.huggingface.co/production/uploads/645cfe4603fc86c46b3e46d1/Haraj8I91wCax4JjdYmaN.jpeg)

# Metabird-7B

<details><summary>See axolotl config</summary>

axolotl version: `0.3.0`
```yaml
base_model: leveldevai/TurdusBeagle-7B
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: shuyuej/metamath_gsm8k
    type:
      system_prompt: ""
      field_instruction: question
      field_output: answer
      format: "[INST] {instruction} [/INST]"
      no_input_format: "[INST] {instruction} [/INST]"
      
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./out

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

## Metabird

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

This model is a fine-tuned version of [leveldevai/TurdusBeagle-7B](https://huggingface.co/leveldevai/TurdusBeagle-7B) on the shuyuej/metamath_gsm8k dataset.
It achieves the following results on the evaluation set:

- Loss: 0.4017

## Model description

More information soon

## Intended uses & limitations

More information soon

## Training and evaluation data

More information soon

## Training procedure

More information soon


### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9074        | 0.05  | 1    | 0.9932          |
| 0.5012        | 0.26  | 5    | 0.4849          |
| 0.4204        | 0.53  | 10   | 0.4435          |
| 0.3748        | 0.79  | 15   | 0.4017          |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_ConvexAI__Metabird-7B)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |71.03|
|AI2 Reasoning Challenge (25-Shot)|69.54|
|HellaSwag (10-Shot)              |87.54|
|MMLU (5-Shot)                    |65.27|
|TruthfulQA (0-shot)              |57.94|
|Winogrande (5-shot)              |83.03|
|GSM8k (5-shot)                   |62.85|