CoreyMorris commited on
Commit
2b3427d
1 Parent(s): 01eeefd

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 951.33 +/- 234.16
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: AntBulletEnv-v0
20
+ type: AntBulletEnv-v0
21
+ ---
22
+
23
+ # **A2C** Agent playing **AntBulletEnv-v0**
24
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0733ba5a1bc8bf9a5e0684b890ef742947fe0c7500ec0799bf4a9cdb7cbb279
3
+ size 129030
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a78b67f70>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a78b6a040>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a78b6a0d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a78b6a160>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6a78b6a1f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6a78b6a280>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a78b6a310>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6a78b6a3a0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a78b6a430>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a78b6a4c0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a78b6a550>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x7f6a78c20a40>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {
23
+ ":type:": "<class 'dict'>",
24
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
25
+ "log_std_init": -2,
26
+ "ortho_init": false,
27
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
28
+ "optimizer_kwargs": {
29
+ "alpha": 0.99,
30
+ "eps": 1e-05,
31
+ "weight_decay": 0
32
+ }
33
+ },
34
+ "observation_space": {
35
+ ":type:": "<class 'gym.spaces.box.Box'>",
36
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
37
+ "dtype": "float32",
38
+ "_shape": [
39
+ 28
40
+ ],
41
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
42
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
43
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
44
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "_np_random": null
46
+ },
47
+ "action_space": {
48
+ ":type:": "<class 'gym.spaces.box.Box'>",
49
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
50
+ "dtype": "float32",
51
+ "_shape": [
52
+ 8
53
+ ],
54
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
55
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
56
+ "bounded_below": "[ True True True True True True True True]",
57
+ "bounded_above": "[ True True True True True True True True]",
58
+ "_np_random": null
59
+ },
60
+ "n_envs": 4,
61
+ "num_timesteps": 2000000,
62
+ "_total_timesteps": 2000000,
63
+ "_num_timesteps_at_start": 0,
64
+ "seed": null,
65
+ "action_noise": null,
66
+ "start_time": 1664148811.8267446,
67
+ "learning_rate": 0.00096,
68
+ "tensorboard_log": "./tensorboard",
69
+ "lr_schedule": {
70
+ ":type:": "<class 'function'>",
71
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
72
+ },
73
+ "_last_obs": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG0CsT4t5jG/TS6SvZ+uzz8gpyq/j3yZvix7pb/S/2c/xgwYPxelQT/ubZq/vHAGOkkgiD/u3QC9TJ1Qv8TQpj7UNK2/xDkHPS4G1b8ftAY/DOyDP9jDkD6CP2O/KTy9P5x/DD9sotQ+1jgOPwgjhb+3hc6/mCwtv9nJOL3+oky/YDpIP5Ex1jwaWyg+VPzVP8SHlj97enW8kRqbvzCxHr1JA4g//mTxvFh56744x/u9yYQbv0oGgb0eJra9qmxqPaxNpL/6p6G99F5dv/8iljqcfww/1hoawNY4Dj9qH3Y/iw7wv6Y4ir5KAss+8aI5v8nxZz/4REi+RhuePr0nsT+sVoU/k0i3PZbZmb+bbhY+hpQ2PzbXNz5Pwgy+9lw+PzLMkz4KnUM/Fa7QPr7cGD95ar+/1gCOvdsndb9/HRG9nH8MP2yi1D7WOA4/ah92P4kYWb8dXna/9jYRv7nLWb8RIms/N+JXPSFwjj2hAFO+qsrJPvvEGDwQ1s6+tdYQPdW1yj6sjCI71LI7P/hGBj2JZKy/wCT7OwqVbz95G4o9+834PqYLwL1oEYk+MF5svJx/DD9sotQ+1jgOP2ofdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
76
+ },
77
+ "_last_episode_starts": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
80
+ },
81
+ "_last_original_obs": {
82
+ ":type:": "<class 'numpy.ndarray'>",
83
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB1PM02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcJq/vAAAAACgweW/AAAAAK/Vbj0AAAAAewXcPwAAAABZRlw9AAAAAP5Y4T8AAAAAvIsIvgAAAACWkuC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+tseNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP4bCb4AAAAA8W73vwAAAADaOgQ+AAAAADcM4j8AAAAAmIovuwAAAAA0h+8/AAAAAJnvEb4AAAAAX7v9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOlozUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACxLG9AAAAAEHj878AAAAA3VXivQAAAADg5+w/AAAAAOCy4bsAAAAAfNfiPwAAAAAWBaS9AAAAANRf/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABc0wI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYmKPPQAAAAAzCgDAAAAAAGUuz7wAAAAAmJDbPwAAAADropM9AAAAAGWbAEAAAAAAWx7hvQAAAABXuOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
84
+ },
85
+ "_episode_num": 0,
86
+ "use_sde": true,
87
+ "sde_sample_freq": -1,
88
+ "_current_progress_remaining": 0.0,
89
+ "ep_info_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIrM2qxTsIGMAWyUTegDjAF0lEdAqW8rbDdgv3V9lChoBkdAhsSY3WFvh2gHTegDaAhHQKlzDLhaTwF1fZQoaAZHQIZvQoE0SAZoB03oA2gIR0CpdYXFUADJdX2UKGgGR0CG8ynjQzDXaAdN6ANoCEdAqXWPag261HV9lChoBkdAiJL5AY51eWgHTegDaAhHQKl8tDE3sHB1fZQoaAZHQIfIahYeT3ZoB03oA2gIR0CpgJbIkqtpdX2UKGgGR0CGQvxXnyNGaAdN6ANoCEdAqYMbjrAxjHV9lChoBkdAhvTQsf7rLWgHTegDaAhHQKmDJWwu/UR1fZQoaAZHQIeX76N2ki5oB03oA2gIR0CpikaQeV9ndX2UKGgGR0CGGFSofjjraAdN6ANoCEdAqY5S9Iwud3V9lChoBkdAhImZjpcHGGgHTegDaAhHQKmQ7jYI0Il1fZQoaAZHQJLvEpobn5loB03oA2gIR0CpkPiBwuM/dX2UKGgGR0CHGgpYs/Y8aAdN6ANoCEdAqZhAt4A0bnV9lChoBkdAh134CQtBfWgHTegDaAhHQKmcMbhm5Dt1fZQoaAZHQIntktkFwDNoB03oA2gIR0CpnrtPHktFdX2UKGgGR0CDUypiI+GHaAdN6ANoCEdAqZ7FVNpM6HV9lChoBkdAgd0PH93r2WgHTegDaAhHQKmmDchTwUh1fZQoaAZHQJS9agCfYjBoB03oA2gIR0CpqekHt4RmdX2UKGgGR0CXbrZQpF1CaAdN6ANoCEdAqaxlqL0jDHV9lChoBkdAkh3gosqaw2gHTegDaAhHQKmscU5+6RR1fZQoaAZHQISstm16Vt5oB03oA2gIR0Cps+cfV7QcdX2UKGgGR0CHBSVk+X7caAdN6ANoCEdAqbfXf/FR53V9lChoBkdAlrdPaURnOGgHTegDaAhHQKm6Zu6VdHF1fZQoaAZHQIE4o6CDmKZoB03oA2gIR0CpunI4dZJTdX2UKGgGR0CVqIO/cnE3aAdN6ANoCEdAqcGHzMA3k3V9lChoBkdAluFUAggX/GgHTegDaAhHQKnFkHrQgLZ1fZQoaAZHQIZHp22XsxBoB03oA2gIR0CpyApZW7vodX2UKGgGR0CQ13zSCvovaAdN6ANoCEdAqcgUHD766HV9lChoBkdAlBW8MRYigWgHTegDaAhHQKnPJE1EVnF1fZQoaAZHQJbCDBxgiNdoB03oA2gIR0Cp0v0r9VFQdX2UKGgGR0CFerGCqZMMaAdN6ANoCEdAqdWBgqmTDHV9lChoBkdAhe9IBq9GqmgHTegDaAhHQKnViyNXHR11fZQoaAZHQIa1aZBsyi5oB03oA2gIR0Cp3MXai9IxdX2UKGgGR0CGXO59Vmz0aAdN6ANoCEdAqeDAYFaB7XV9lChoBkdAhX8zURWcSWgHTegDaAhHQKnjMjPfKp11fZQoaAZHQIU8WBnSOR1oB03oA2gIR0Cp4zxQBPsSdX2UKGgGR0CVlnxFy7wsaAdN6ANoCEdAqepUvTPSlXV9lChoBkdAlSrjnRsuWmgHTegDaAhHQKnuM3nZCfJ1fZQoaAZHQJUfbb48EFJoB03oA2gIR0Cp8LkIomXxdX2UKGgGR0CF9aBMi8nNaAdN6ANoCEdAqfDEZ3s5XHV9lChoBkdAhy4EcbR4QmgHTegDaAhHQKn35M8ox591fZQoaAZHQIf3OCiAUcpoB03oA2gIR0Cp+9KU3XI2dX2UKGgGR0CHTbeCTUy6aAdN6ANoCEdAqf5M+PikwnV9lChoBkdAh3unsTnJT2gHTegDaAhHQKn+Vq7Ackt1fZQoaAZHQJPGrehwl0JoB03oA2gIR0CqBWIKc/dJdX2UKGgGR0CHefxTbWVeaAdN6ANoCEdAqglPo1UEPnV9lChoBkdAkJQNyo4uLGgHTegDaAhHQKoL2BYmsvJ1fZQoaAZHQIS64uPFNtZoB03oA2gIR0CqC+GbsniOdX2UKGgGR0CIlc0DU3GXaAdN6ANoCEdAqhLygVXV9XV9lChoBkdAk63YUJv5xmgHTegDaAhHQKoW4JaaCtl1fZQoaAZHQIoEf9WIXTFoB03oA2gIR0CqGWldC3PSdX2UKGgGR0CWPn0th/iHaAdN6ANoCEdAqhly3AmAsnV9lChoBkdAlVhP4M4LkWgHTegDaAhHQKogWdYGMXJ1fZQoaAZHQJX4y3OObRZoB03oA2gIR0CqJDdpqREGdX2UKGgGR0CV9QV3EAHWaAdN6ANoCEdAqibknVoYenV9lChoBkdAkUe2ReTmn2gHTegDaAhHQKom7n7pFCt1fZQoaAZHQIvhm27Wd3BoB03oA2gIR0CqLlKhL5ARdX2UKGgGR0CD9iTTvy9VaAdN6ANoCEdAqjJffoA4oHV9lChoBkdAldPJ/Tb35GgHTegDaAhHQKo08QYDT0B1fZQoaAZHQIn6AzJp35hoB03oA2gIR0CqNPtJnQIEdX2UKGgGR0CD8VIDoyKvaAdN6ANoCEdAqjwdZ7ojfXV9lChoBkdAhwSntWuHOGgHTegDaAhHQKpAaN8VpK11fZQoaAZHQJSek4ZMtbtoB03oA2gIR0CqQvFVDKHPdX2UKGgGR0COK0Z62OQyaAdN6ANoCEdAqkL7IPsiS3V9lChoBkdAhWRlwcYIjWgHTegDaAhHQKpKIlP8AJd1fZQoaAZHQI7ALHU+cH5oB03oA2gIR0CqThLYwqRVdX2UKGgGR0CMrFiI+GGmaAdN6ANoCEdAqlChi9ZieHV9lChoBkdAhAgofSx7iWgHTegDaAhHQKpQq3hn8Kp1fZQoaAZHQIe7nvc8DCBoB03oA2gIR0CqV9ZgogFHdX2UKGgGR0CF5LP69CeFaAdN6ANoCEdAqlv/wTdtVXV9lChoBkdAhdJTgdfb9WgHTegDaAhHQKpejV/+bVl1fZQoaAZHQJL4vGp++dtoB03oA2gIR0CqXpcR+SbIdX2UKGgGR0CHYqCFsYVJaAdN6ANoCEdAqmXfjOs1bnV9lChoBkdAg72f8EV32WgHTegDaAhHQKpp0/u9eyB1fZQoaAZHQISdsmOU+s5oB03oA2gIR0CqbGQV9F4LdX2UKGgGR0CELDpljEvTaAdN6ANoCEdAqmxunfl6q3V9lChoBkdAhqVMG5c1O2gHTegDaAhHQKpzt1K5Cnh1fZQoaAZHQINW+vfTCtRoB03oA2gIR0Cqd8ksBhhIdX2UKGgGR0CQ9t0ZFXq8aAdN6ANoCEdAqno+8PFvRHV9lChoBkdAhM3ipFTef2gHTegDaAhHQKp6SAJ9iMJ1fZQoaAZHQIpb/FHavidoB03oA2gIR0CqgYoQFs55dX2UKGgGR0CCMKQIUrTZaAdN6ANoCEdAqoV7yjHn2nV9lChoBkdAgHc95IH1OGgHTegDaAhHQKqIDoB7u2J1fZQoaAZHQI/wjeZXuE5oB03oA2gIR0CqiBlYEGJOdX2UKGgGR0CT8Bhn8KoiaAdN6ANoCEdAqo9XSro4dnV9lChoBkdAkIsWq94/vGgHTegDaAhHQKqTZfHggox1fZQoaAZHQJIzGSFGoaVoB03oA2gIR0CqlfzXarWAdX2UKGgGR0CILMQlKK51aAdN6ANoCEdAqpYGx6fJ3nV9lChoBkdAgwBUNz8xbmgHTegDaAhHQKqdjdKNAC51fZQoaAZHQIgSnaSLZSNoB03oA2gIR0CqoZm78Nx3dX2UKGgGR0CDqk2Hck+paAdN6ANoCEdAqqQxIxxku3V9lChoBkdAg80IvrWy1WgHTegDaAhHQKqkO3iJfpl1fZQoaAZHQIM65PKuB+ZoB03oA2gIR0Cqq3IYNy5qdX2UKGgGR0CHGe31BdD6aAdN6ANoCEdAqq9c36yjYnV9lChoBkdAiK8f4qPOp2gHTegDaAhHQKqx5N6gM+h1fZQoaAZHQIPHr0cwQDpoB03oA2gIR0Cqse6fzz3AdX2UKGgGR0CFwd2QGOdYaAdN6ANoCEdAqrkXFWGRFXV9lChoBkdAhQjJw84gimgHTegDaAhHQKq88fYBeX11fZQoaAZHQIQR4I8hcJNoB03oA2gIR0Cqv3eEAYHgdX2UKGgGR0CHMLHDrJKbaAdN6ANoCEdAqr+BKtga33VlLg=="
92
+ },
93
+ "ep_success_buffer": {
94
+ ":type:": "<class 'collections.deque'>",
95
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
96
+ },
97
+ "_n_updates": 62500,
98
+ "n_steps": 8,
99
+ "gamma": 0.99,
100
+ "gae_lambda": 0.9,
101
+ "ent_coef": 0.0,
102
+ "vf_coef": 0.4,
103
+ "max_grad_norm": 0.5,
104
+ "normalize_advantage": false
105
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f803a6634d2e81f79771063bca8e087e09377fc2e8e15d0f0be96c8751b4fdc
3
+ size 56126
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d34b51f80872f3b074a873ef963dfb3178dc6f12fa91b56720025118562e955c
3
+ size 56766
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.0-122-generic-x86_64-with-glibc2.31 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022
2
+ Python: 3.9.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.23.1
7
+ Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6a78b67f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6a78b6a040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6a78b6a0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6a78b6a160>", "_build": "<function ActorCriticPolicy._build at 0x7f6a78b6a1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6a78b6a280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6a78b6a310>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6a78b6a3a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6a78b6a430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6a78b6a4c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6a78b6a550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6a78c20a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1664148811.8267446, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAG0CsT4t5jG/TS6SvZ+uzz8gpyq/j3yZvix7pb/S/2c/xgwYPxelQT/ubZq/vHAGOkkgiD/u3QC9TJ1Qv8TQpj7UNK2/xDkHPS4G1b8ftAY/DOyDP9jDkD6CP2O/KTy9P5x/DD9sotQ+1jgOPwgjhb+3hc6/mCwtv9nJOL3+oky/YDpIP5Ex1jwaWyg+VPzVP8SHlj97enW8kRqbvzCxHr1JA4g//mTxvFh56744x/u9yYQbv0oGgb0eJra9qmxqPaxNpL/6p6G99F5dv/8iljqcfww/1hoawNY4Dj9qH3Y/iw7wv6Y4ir5KAss+8aI5v8nxZz/4REi+RhuePr0nsT+sVoU/k0i3PZbZmb+bbhY+hpQ2PzbXNz5Pwgy+9lw+PzLMkz4KnUM/Fa7QPr7cGD95ar+/1gCOvdsndb9/HRG9nH8MP2yi1D7WOA4/ah92P4kYWb8dXna/9jYRv7nLWb8RIms/N+JXPSFwjj2hAFO+qsrJPvvEGDwQ1s6+tdYQPdW1yj6sjCI71LI7P/hGBj2JZKy/wCT7OwqVbz95G4o9+834PqYLwL1oEYk+MF5svJx/DD9sotQ+1jgOP2ofdj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAB1PM02AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAcJq/vAAAAACgweW/AAAAAK/Vbj0AAAAAewXcPwAAAABZRlw9AAAAAP5Y4T8AAAAAvIsIvgAAAACWkuC/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA+tseNwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgP4bCb4AAAAA8W73vwAAAADaOgQ+AAAAADcM4j8AAAAAmIovuwAAAAA0h+8/AAAAAJnvEb4AAAAAX7v9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOlozUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACxLG9AAAAAEHj878AAAAA3VXivQAAAADg5+w/AAAAAOCy4bsAAAAAfNfiPwAAAAAWBaS9AAAAANRf/r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABc0wI2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAYmKPPQAAAAAzCgDAAAAAAGUuz7wAAAAAmJDbPwAAAADropM9AAAAAGWbAEAAAAAAWx7hvQAAAABXuOm/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIrM2qxTsIGMAWyUTegDjAF0lEdAqW8rbDdgv3V9lChoBkdAhsSY3WFvh2gHTegDaAhHQKlzDLhaTwF1fZQoaAZHQIZvQoE0SAZoB03oA2gIR0CpdYXFUADJdX2UKGgGR0CG8ynjQzDXaAdN6ANoCEdAqXWPag261HV9lChoBkdAiJL5AY51eWgHTegDaAhHQKl8tDE3sHB1fZQoaAZHQIfIahYeT3ZoB03oA2gIR0CpgJbIkqtpdX2UKGgGR0CGQvxXnyNGaAdN6ANoCEdAqYMbjrAxjHV9lChoBkdAhvTQsf7rLWgHTegDaAhHQKmDJWwu/UR1fZQoaAZHQIeX76N2ki5oB03oA2gIR0CpikaQeV9ndX2UKGgGR0CGGFSofjjraAdN6ANoCEdAqY5S9Iwud3V9lChoBkdAhImZjpcHGGgHTegDaAhHQKmQ7jYI0Il1fZQoaAZHQJLvEpobn5loB03oA2gIR0CpkPiBwuM/dX2UKGgGR0CHGgpYs/Y8aAdN6ANoCEdAqZhAt4A0bnV9lChoBkdAh134CQtBfWgHTegDaAhHQKmcMbhm5Dt1fZQoaAZHQIntktkFwDNoB03oA2gIR0CpnrtPHktFdX2UKGgGR0CDUypiI+GHaAdN6ANoCEdAqZ7FVNpM6HV9lChoBkdAgd0PH93r2WgHTegDaAhHQKmmDchTwUh1fZQoaAZHQJS9agCfYjBoB03oA2gIR0CpqekHt4RmdX2UKGgGR0CXbrZQpF1CaAdN6ANoCEdAqaxlqL0jDHV9lChoBkdAkh3gosqaw2gHTegDaAhHQKmscU5+6RR1fZQoaAZHQISstm16Vt5oB03oA2gIR0Cps+cfV7QcdX2UKGgGR0CHBSVk+X7caAdN6ANoCEdAqbfXf/FR53V9lChoBkdAlrdPaURnOGgHTegDaAhHQKm6Zu6VdHF1fZQoaAZHQIE4o6CDmKZoB03oA2gIR0CpunI4dZJTdX2UKGgGR0CVqIO/cnE3aAdN6ANoCEdAqcGHzMA3k3V9lChoBkdAluFUAggX/GgHTegDaAhHQKnFkHrQgLZ1fZQoaAZHQIZHp22XsxBoB03oA2gIR0CpyApZW7vodX2UKGgGR0CQ13zSCvovaAdN6ANoCEdAqcgUHD766HV9lChoBkdAlBW8MRYigWgHTegDaAhHQKnPJE1EVnF1fZQoaAZHQJbCDBxgiNdoB03oA2gIR0Cp0v0r9VFQdX2UKGgGR0CFerGCqZMMaAdN6ANoCEdAqdWBgqmTDHV9lChoBkdAhe9IBq9GqmgHTegDaAhHQKnViyNXHR11fZQoaAZHQIa1aZBsyi5oB03oA2gIR0Cp3MXai9IxdX2UKGgGR0CGXO59Vmz0aAdN6ANoCEdAqeDAYFaB7XV9lChoBkdAhX8zURWcSWgHTegDaAhHQKnjMjPfKp11fZQoaAZHQIU8WBnSOR1oB03oA2gIR0Cp4zxQBPsSdX2UKGgGR0CVlnxFy7wsaAdN6ANoCEdAqepUvTPSlXV9lChoBkdAlSrjnRsuWmgHTegDaAhHQKnuM3nZCfJ1fZQoaAZHQJUfbb48EFJoB03oA2gIR0Cp8LkIomXxdX2UKGgGR0CF9aBMi8nNaAdN6ANoCEdAqfDEZ3s5XHV9lChoBkdAhy4EcbR4QmgHTegDaAhHQKn35M8ox591fZQoaAZHQIf3OCiAUcpoB03oA2gIR0Cp+9KU3XI2dX2UKGgGR0CHTbeCTUy6aAdN6ANoCEdAqf5M+PikwnV9lChoBkdAh3unsTnJT2gHTegDaAhHQKn+Vq7Ackt1fZQoaAZHQJPGrehwl0JoB03oA2gIR0CqBWIKc/dJdX2UKGgGR0CHefxTbWVeaAdN6ANoCEdAqglPo1UEPnV9lChoBkdAkJQNyo4uLGgHTegDaAhHQKoL2BYmsvJ1fZQoaAZHQIS64uPFNtZoB03oA2gIR0CqC+GbsniOdX2UKGgGR0CIlc0DU3GXaAdN6ANoCEdAqhLygVXV9XV9lChoBkdAk63YUJv5xmgHTegDaAhHQKoW4JaaCtl1fZQoaAZHQIoEf9WIXTFoB03oA2gIR0CqGWldC3PSdX2UKGgGR0CWPn0th/iHaAdN6ANoCEdAqhly3AmAsnV9lChoBkdAlVhP4M4LkWgHTegDaAhHQKogWdYGMXJ1fZQoaAZHQJX4y3OObRZoB03oA2gIR0CqJDdpqREGdX2UKGgGR0CV9QV3EAHWaAdN6ANoCEdAqibknVoYenV9lChoBkdAkUe2ReTmn2gHTegDaAhHQKom7n7pFCt1fZQoaAZHQIvhm27Wd3BoB03oA2gIR0CqLlKhL5ARdX2UKGgGR0CD9iTTvy9VaAdN6ANoCEdAqjJffoA4oHV9lChoBkdAldPJ/Tb35GgHTegDaAhHQKo08QYDT0B1fZQoaAZHQIn6AzJp35hoB03oA2gIR0CqNPtJnQIEdX2UKGgGR0CD8VIDoyKvaAdN6ANoCEdAqjwdZ7ojfXV9lChoBkdAhwSntWuHOGgHTegDaAhHQKpAaN8VpK11fZQoaAZHQJSek4ZMtbtoB03oA2gIR0CqQvFVDKHPdX2UKGgGR0COK0Z62OQyaAdN6ANoCEdAqkL7IPsiS3V9lChoBkdAhWRlwcYIjWgHTegDaAhHQKpKIlP8AJd1fZQoaAZHQI7ALHU+cH5oB03oA2gIR0CqThLYwqRVdX2UKGgGR0CMrFiI+GGmaAdN6ANoCEdAqlChi9ZieHV9lChoBkdAhAgofSx7iWgHTegDaAhHQKpQq3hn8Kp1fZQoaAZHQIe7nvc8DCBoB03oA2gIR0CqV9ZgogFHdX2UKGgGR0CF5LP69CeFaAdN6ANoCEdAqlv/wTdtVXV9lChoBkdAhdJTgdfb9WgHTegDaAhHQKpejV/+bVl1fZQoaAZHQJL4vGp++dtoB03oA2gIR0CqXpcR+SbIdX2UKGgGR0CHYqCFsYVJaAdN6ANoCEdAqmXfjOs1bnV9lChoBkdAg72f8EV32WgHTegDaAhHQKpp0/u9eyB1fZQoaAZHQISdsmOU+s5oB03oA2gIR0CqbGQV9F4LdX2UKGgGR0CELDpljEvTaAdN6ANoCEdAqmxunfl6q3V9lChoBkdAhqVMG5c1O2gHTegDaAhHQKpzt1K5Cnh1fZQoaAZHQINW+vfTCtRoB03oA2gIR0Cqd8ksBhhIdX2UKGgGR0CQ9t0ZFXq8aAdN6ANoCEdAqno+8PFvRHV9lChoBkdAhM3ipFTef2gHTegDaAhHQKp6SAJ9iMJ1fZQoaAZHQIpb/FHavidoB03oA2gIR0CqgYoQFs55dX2UKGgGR0CCMKQIUrTZaAdN6ANoCEdAqoV7yjHn2nV9lChoBkdAgHc95IH1OGgHTegDaAhHQKqIDoB7u2J1fZQoaAZHQI/wjeZXuE5oB03oA2gIR0CqiBlYEGJOdX2UKGgGR0CT8Bhn8KoiaAdN6ANoCEdAqo9XSro4dnV9lChoBkdAkIsWq94/vGgHTegDaAhHQKqTZfHggox1fZQoaAZHQJIzGSFGoaVoB03oA2gIR0CqlfzXarWAdX2UKGgGR0CILMQlKK51aAdN6ANoCEdAqpYGx6fJ3nV9lChoBkdAgwBUNz8xbmgHTegDaAhHQKqdjdKNAC51fZQoaAZHQIgSnaSLZSNoB03oA2gIR0CqoZm78Nx3dX2UKGgGR0CDqk2Hck+paAdN6ANoCEdAqqQxIxxku3V9lChoBkdAg80IvrWy1WgHTegDaAhHQKqkO3iJfpl1fZQoaAZHQIM65PKuB+ZoB03oA2gIR0Cqq3IYNy5qdX2UKGgGR0CHGe31BdD6aAdN6ANoCEdAqq9c36yjYnV9lChoBkdAiK8f4qPOp2gHTegDaAhHQKqx5N6gM+h1fZQoaAZHQIPHr0cwQDpoB03oA2gIR0Cqse6fzz3AdX2UKGgGR0CFwd2QGOdYaAdN6ANoCEdAqrkXFWGRFXV9lChoBkdAhQjJw84gimgHTegDaAhHQKq88fYBeX11fZQoaAZHQIQR4I8hcJNoB03oA2gIR0Cqv3eEAYHgdX2UKGgGR0CHMLHDrJKbaAdN6ANoCEdAqr+BKtga33VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.4.0-122-generic-x86_64-with-glibc2.31 #138~18.04.1-Ubuntu SMP Fri Jun 24 14:14:03 UTC 2022", "Python": "3.9.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu116", "GPU Enabled": "True", "Numpy": "1.23.1", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (940 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 951.3283483544859, "std_reward": 234.16318631361534, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-09-26T00:51:37.829459"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6be6856bea947abbf012a38160a59db4aa1f3bc2e75af5eff7faf56097cd7e84
3
+ size 2521