|
import llm |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import math |
|
from dataclasses import dataclass |
|
import pickle |
|
|
|
import os |
|
|
|
@llm.hookimpl |
|
def register_models(register): |
|
register(CharGPT()) |
|
|
|
|
|
def new_gelu(x): |
|
""" |
|
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). |
|
Reference: Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415 |
|
""" |
|
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0)))) |
|
|
|
class LayerNorm(nn.Module): |
|
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """ |
|
|
|
def __init__(self, ndim, bias): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(ndim)) |
|
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None |
|
|
|
def forward(self, input): |
|
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5) |
|
|
|
|
|
class CausalSelfAttention(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.n_embd % config.n_head == 0 |
|
|
|
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias) |
|
|
|
self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias) |
|
|
|
self.attn_dropout = nn.Dropout(config.dropout) |
|
self.resid_dropout = nn.Dropout(config.dropout) |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.dropout = config.dropout |
|
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and self.dropout == 0.0 |
|
if not self.flash: |
|
|
|
|
|
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) |
|
.view(1, 1, config.block_size, config.block_size)) |
|
|
|
def forward(self, x): |
|
B, T, C = x.size() |
|
|
|
|
|
q, k ,v = self.c_attn(x).split(self.n_embd, dim=2) |
|
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) |
|
|
|
|
|
if self.flash: |
|
|
|
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout, is_causal=True) |
|
else: |
|
|
|
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1))) |
|
att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf')) |
|
att = F.softmax(att, dim=-1) |
|
att = self.attn_dropout(att) |
|
y = att @ v |
|
y = y.transpose(1, 2).contiguous().view(B, T, C) |
|
|
|
|
|
y = self.resid_dropout(self.c_proj(y)) |
|
return y |
|
|
|
class MLP(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias) |
|
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias) |
|
self.dropout = nn.Dropout(config.dropout) |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = new_gelu(x) |
|
x = self.c_proj(x) |
|
x = self.dropout(x) |
|
return x |
|
|
|
class Block(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.ln_1 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.attn = CausalSelfAttention(config) |
|
self.ln_2 = LayerNorm(config.n_embd, bias=config.bias) |
|
self.mlp = MLP(config) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
@dataclass |
|
class GPTConfig: |
|
block_size: int = 2048 |
|
vocab_size: int = 50304 |
|
n_layer: int = 12 |
|
n_head: int = 12 |
|
n_embd: int = 768 |
|
dropout: float = 0.0 |
|
bias: bool = True |
|
|
|
class GPT(nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
assert config.vocab_size is not None |
|
assert config.block_size is not None |
|
self.config = config |
|
|
|
self.transformer = nn.ModuleDict(dict( |
|
wte = nn.Embedding(config.vocab_size, config.n_embd), |
|
wpe = nn.Embedding(config.block_size, config.n_embd), |
|
drop = nn.Dropout(config.dropout), |
|
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
ln_f = LayerNorm(config.n_embd, bias=config.bias), |
|
)) |
|
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
|
self.transformer.wte.weight = self.lm_head.weight |
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
for pn, p in self.named_parameters(): |
|
if pn.endswith('c_proj.weight'): |
|
torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer)) |
|
|
|
|
|
print("number of parameters: %.2fM" % (self.get_num_params()/1e6,)) |
|
|
|
def get_num_params(self, non_embedding=True): |
|
""" |
|
Return the number of parameters in the model. |
|
For non-embedding count (default), the position embeddings get subtracted. |
|
The token embeddings would too, except due to the parameter sharing these |
|
params are actually used as weights in the final layer, so we include them. |
|
""" |
|
n_params = sum(p.numel() for p in self.parameters()) |
|
if non_embedding: |
|
n_params -= self.transformer.wpe.weight.numel() |
|
return n_params |
|
|
|
def reset_parameters(self): |
|
|
|
for param in self.parameters(): |
|
if param.dim() > 1: |
|
torch.nn.init.xavier_uniform_(param) |
|
|
|
def _init_weights(self, module): |
|
if isinstance(module, nn.Linear): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
if module.bias is not None: |
|
torch.nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Embedding): |
|
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) |
|
|
|
def forward(self, idx, targets=None): |
|
device = idx.device |
|
b, t = idx.size() |
|
assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}" |
|
pos = torch.arange(0, t, dtype=torch.long, device=device).unsqueeze(0) |
|
|
|
|
|
tok_emb = self.transformer.wte(idx) |
|
pos_emb = self.transformer.wpe(pos) |
|
x = self.transformer.drop(tok_emb + pos_emb) |
|
for block in self.transformer.h: |
|
x = block(x) |
|
x = self.transformer.ln_f(x) |
|
|
|
if targets is not None: |
|
|
|
logits = self.lm_head(x) |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
loss = None |
|
|
|
return logits, loss |
|
|
|
|
|
@torch.no_grad() |
|
def generate_streaming(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
""" |
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
Yield the generated indices one at a time rather than concatenating them into a single tensor. |
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
""" |
|
max_idx_length = self.config.block_size |
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx if idx.size(1) <= max_idx_length else idx[:, -max_idx_length:] |
|
|
|
logits, _ = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
yield idx_next.item() |
|
|
|
|
|
|
|
def remove_caseifer(text): |
|
new_text = "" |
|
i = 0 |
|
while i < len(text): |
|
if text[i] == "↨": |
|
if i+1 < len(text): |
|
new_text += text[i+1].upper() |
|
i += 1 |
|
else: |
|
pass |
|
else: |
|
new_text += text[i] |
|
i += 1 |
|
return new_text |
|
|
|
def add_caseifer(text): |
|
|
|
|
|
|
|
tokenlist = "\n\t\x8f !#$%&()*+,-./:;<=>?@[\]^_{|}~§↨©®™¶¥¼°½¾«»£βθ♪ƒ±¤º·€¢\"'…0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" |
|
|
|
upperlist = set("ABCDEFGHIJKLMNOPQRSTUVWXYZ") |
|
new_text = [] |
|
for char in text: |
|
if char in tokenlist: |
|
if char in upperlist: |
|
new_text.append("↨" + char.lower()) |
|
else: |
|
new_text.append(char) |
|
else: |
|
pass |
|
return "".join(new_text) |
|
|
|
|
|
|
|
model_dir = '16bit' |
|
device = 'cuda' |
|
dtype = 'bfloat16' |
|
|
|
class CharGPT(llm.Model): |
|
model_id = "chargpt" |
|
|
|
|
|
def execute(self, prompt, stream, response, conversation): |
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
torch.backends.cudnn.allow_tf32 = True |
|
device_type = 'cuda' if 'cuda' in device else 'cpu' |
|
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] |
|
ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype) |
|
max_new_tokens = 2048 |
|
temperature = 0.8 |
|
top_k = 24 |
|
|
|
ckpt_path = os.path.join(model_dir, 'ckpt.pt') |
|
checkpoint = torch.load(ckpt_path, map_location=device) |
|
gptconf = GPTConfig(**checkpoint['model_args']) |
|
model = GPT(gptconf) |
|
state_dict = checkpoint['model'] |
|
unwanted_prefix = '_orig_mod.' |
|
for k,v in list(state_dict.items()): |
|
if k.startswith(unwanted_prefix): |
|
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) |
|
model.load_state_dict(state_dict) |
|
|
|
model.eval() |
|
model.to(device) |
|
meta_path = os.path.join(model_dir, 'meta.pkl') |
|
with open(meta_path, 'rb') as f: |
|
meta = pickle.load(f) |
|
|
|
stoi, itos = meta['stoi'], meta['itos'] |
|
encode = lambda s: [stoi[c] for c in s] |
|
decode = lambda l: ''.join([itos[i] for i in l]) |
|
text = prompt.prompt |
|
shift = False |
|
|
|
start_ids = encode(add_caseifer(text)) |
|
x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...]) |
|
print(text, end='', flush=True) |
|
for idx_next in model.generate_streaming(x, max_new_tokens, temperature=temperature, top_k=top_k): |
|
|
|
char = decode([idx_next]) |
|
|
|
if char == '§': |
|
|
|
|
|
|
|
|
|
|
|
break |
|
|
|
|
|
if shift: |
|
|
|
yield char.upper() |
|
|
|
shift = False |
|
elif char == '↨': |
|
shift = True |
|
else: |
|
|
|
yield char |
|
|