--- license: cc-by-2.0 datasets: - CreativeLang/vua20_metaphor language: - en --- # Metaphor_Detection_Roberta_Seq ## Description - **Paper:** [FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning](https://aclanthology.org/2023.eacl-main.114.pdf) ## Model Summary Creative Language Toolkit (CLTK) Metadata - CL Type: Metaphor - Task Type: detection - Size: roberta-base (500MB) - Created time: 2022 This model is a easy to use metaphor detection baseline realised with `roberta-base` fine-tuned on [CreativeLang/vua20_metaphor](https://huggingface.co/datasets/CreativeLang/vua20_metaphor) dataset. To use this model, please use the `inference.py` in the [FrameBERT repo](https://github.com/liyucheng09/MetaphorFrame). Just run: ``` python inference.py CreativeLang/metaphor_detection_roberta_seq ``` Check out `inference.py` to learn how to apply the model on your own data. For the details of this model and the dataset used, we refer you to the release [paper](https://aclanthology.org/2023.eacl-main.114.pdf). ## Metrics | Metric | Value | |----------------------------------|--------------------------| | eval_loss | 0.2656 | | eval_accuracy_score | 0.9142 | | eval_precision | 0.9142 | | eval_recall | 0.9142 | | eval_f1 | 0.9142 | | eval_f1_macro | 0.7315 | | eval_runtime | 8.9802 | | eval_samples_per_second | 411.7960 | | eval_steps_per_second | 51.5580 | | epoch | 3.0000 | ### Citation Information If you find this dataset helpful, please cite: ``` @article{Li2023FrameBERTCM, title={FrameBERT: Conceptual Metaphor Detection with Frame Embedding Learning}, author={Yucheng Li and Shunyu Wang and Chenghua Lin and Frank Guerin and Lo{\"i}c Barrault}, journal={ArXiv}, year={2023}, volume={abs/2302.04834} } ``` ### Contributions If you have any queries, please open an issue or direct your queries to [mail](mailto:yucheng.li@surrey.ac.uk).