CristoJV commited on
Commit
f4660cd
1 Parent(s): 31d384d

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 260.34 +/- 29.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb4d5617d00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb4d5617d90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb4d5617e20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb4d5617eb0>", "_build": "<function ActorCriticPolicy._build at 0x7bb4d5617f40>", "forward": "<function ActorCriticPolicy.forward at 0x7bb4d5624040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb4d56240d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb4d5624160>", "_predict": "<function ActorCriticPolicy._predict at 0x7bb4d56241f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb4d5624280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb4d5624310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb4d56243a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb4d5620900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691181508924132277, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPZOT5BB/I+y0WxvTAOtL5sFZk99g2PvQAAAAAAAAAAzWxqO/bsZ7p2qau3xFVgsgYaxbrIlMg2AACAPwAAgD+apRW+NU+dP+1eC7/COOq+cZ4mvhiRlb4AAAAAAAAAAKoGUr682aU+cwocPlzMuL5XvbS8TzOvPQAAAAAAAAAAGtM6PaTpfrtIVGO8mb+IPJU3ozzu+Wq9AACAPwAAgD8zdXM+5P0hP1akvL2HVJa+qakVPi3IaL0AAAAAAAAAAHMjtr04bou7C+u8PFIGlTx4wQ89Xt99vQAAAAAAAIA/pil6vgX41jzxfoc6AqIuuQZ6a74Bw7q5AAAAAAAAgD8GqDO+cbEEuwGARzG/pjew7pP9O3FmQLAAAIA/AACAP1r5lD3Mfrs/VfrTPoA+S70+Dz89rc1VPgAAAAAAAAAAtvxfvmXuZj5LOXI+1s6Evlg5g7y1Iu08AAAAAAAAAABmPQ49Ue22Pn0n1r1bC4q+LTzKO/bfuL0AAAAAAAAAABorzr1Ix4O6iKHHuMvHDLSWb4E6kLfjNwAAgD8AAIA/8wf3vdLF4ruYR38+3QkYviQ79jyyd7Y+AACAPwAAgD/TxRq+7rXaPrVdzz3laI2+OAuevJFMKD0AAAAAAAAAAP4pl75z1Sc/smgXvrDt8L6x0BW+oiWlPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAvl3dKujiMAWyUTTkBjAF0lEdAkw2rYkE9uHV9lChoBkdAcV/4T9KmK2gHTbMBaAhHQJMN9JXhfjV1fZQoaAZHQD6+X7cfvF5oB0vPaAhHQJMO97v5P/J1fZQoaAZHQHNBixFAmiRoB00tAWgIR0CTD9u3MINWdX2UKGgGR0BxB7doFmnPaAdNBgFoCEdAkxDqo/A0sXV9lChoBkdAcHkTUiILxGgHTTABaAhHQJMRHXbuc+d1fZQoaAZHQG9BGKhtcfNoB01QAWgIR0CTEWwd8zAOdX2UKGgGR0BXJV+/gzguaAdL42gIR0CTEdjHn2ZidX2UKGgGR0BwTkysS00FaAdNAwFoCEdAkxJt9tuUEHV9lChoBkdAcuOT6zmfXmgHS/9oCEdAkxNaE8JUpHV9lChoBkdAEvFCswL3K2gHS9VoCEdAkxRX0Cih4HV9lChoBkdAcMrl18stkGgHTQ0BaAhHQJMVAp3HJcR1fZQoaAZHQF86fQKKHfxoB03oA2gIR0CTFQtZFG5MdX2UKGgGR0BynUPEsJ6ZaAdNegFoCEdAkxZeWSlnAnV9lChoBkdASUh//echDGgHS7toCEdAkxbY0dilSHV9lChoBkdAcPUbH6uW8mgHS+doCEdAkxeiZa3ZwnV9lChoBkdAbyuUWVNYbWgHTQsBaAhHQJMXtcIJJGx1fZQoaAZHQHC7XA2ycCpoB00iAWgIR0CTGBUmD15CdX2UKGgGR0A8p4tYjjaPaAdLu2gIR0CTGCxcVxjsdX2UKGgGR0BIk7sv7FbWaAdLyWgIR0CTGFuTibUgdX2UKGgGR0BwRcuoP07KaAdNNgFoCEdAkxlUgSvkinV9lChoBkdAcFzE3Kji42gHTQgBaAhHQJMaNwvQF9t1fZQoaAZHQG/nbMgU1yhoB00eAWgIR0CTG9q+JxecdX2UKGgGR0BwmZzeXRgJaAdNGQFoCEdAkxxGm1pj+nV9lChoBkdAQfe/nGKhtmgHS8JoCEdAkxz8fms/6nV9lChoBkdAcddc+7lJYmgHS/5oCEdAkx3he5WilHV9lChoBkdAcB7nanJkoWgHTRIBaAhHQJMd9mmLtNV1fZQoaAZHQEFMGdqcmShoB0vCaAhHQJMexZX+2mZ1fZQoaAZHQDMEEW69TP1oB0vIaAhHQJMfVurIYFd1fZQoaAZHQG7eSWJJoTRoB00oAWgIR0CTH2s+3YthdX2UKGgGR0BwbYSAYpDvaAdNGAFoCEdAkyCaSLZSN3V9lChoBkdAcCFrpJPIn2gHTXoBaAhHQJMgvkzXSSh1fZQoaAZHQEB6lKK508xoB0vLaAhHQJMhfvBrN4Z1fZQoaAZHQG/6tRm9QGhoB00eAWgIR0CTIZhcqvvCdX2UKGgGR0ByiZmjCYTkaAdNIwFoCEdAkyJJLdvbXnV9lChoBkdAcX/wSamXPmgHTTMBaAhHQJMiW2WpqAV1fZQoaAZHQG8TNeD3/PxoB00eAWgIR0CTI0hrnDBNdX2UKGgGR0BwESPfbblBaAdNEwFoCEdAkyXh7E5yVHV9lChoBkdAbBhbwjMV12gHS/loCEdAkya0tuk1uXV9lChoBkdAcAxMKkVN6GgHTRoBaAhHQJMm/bVSXMR1fZQoaAZHQG/TImw7kn1oB0v4aAhHQJMoOlgtvn91fZQoaAZHQHGKP2Xb/OtoB01qAWgIR0CTKO1tO2y+dX2UKGgGR0ByeyebutwKaAdNNAFoCEdAkykDEaVD8nV9lChoBkdAbSsQ6IWP92gHTQ4BaAhHQJMpDtF8XvZ1fZQoaAZHQHPATKoybhFoB00xAWgIR0CTPD8/D+BIdX2UKGgGR0Bx/Ea/ATIvaAdNPQFoCEdAkz6pRXOnmHV9lChoBkdAcpPpuuRs/WgHTS4BaAhHQJM+82l2vB91fZQoaAZHQF7gpr1uivhoB03oA2gIR0CTPxm/FirldX2UKGgGR0Byc/cvduYQaAdNAQFoCEdAkz9W/SH/LnV9lChoBkdAccxFdcB2fWgHTVUBaAhHQJM/coKD0191fZQoaAZHQHJ89B4Uvf1oB00lAWgIR0CTP4k7wKBvdX2UKGgGR0A8xjOcDr7gaAdLwGgIR0CTQiSyMUAUdX2UKGgGR0Bv3jKNhmXgaAdNEgFoCEdAk0JIBRyfc3V9lChoBkdAcRqvMKTjemgHTR8BaAhHQJNDd+DvmYB1fZQoaAZHQG0fH/95yENoB02+AWgIR0CTQ9mWt2cKdX2UKGgGR0BscVmBe5WjaAdNFQFoCEdAk0Rm0NSZSnV9lChoBkdAcmflK9PDYWgHTUIBaAhHQJNE14u9OAR1fZQoaAZHQHC4SFfzBhxoB00RAWgIR0CTROA+IMz/dX2UKGgGR0BERGi5/b0waAdL0mgIR0CTRaehf0EpdX2UKGgGR0BzNmT5ftx/aAdN4gFoCEdAk0Wosd1dPnV9lChoBkdAcBLaIvalDWgHTS0BaAhHQJNFstcv/R51fZQoaAZHQHEmyNOuaF5oB00pAWgIR0CTRi/iYLLIdX2UKGgGR0ByO9VzZHuraAdNCAFoCEdAk0dUGZ/kNnV9lChoBkdAcnhuqWC2+mgHTQUBaAhHQJNHkQEpy6t1fZQoaAZHQDM29qUNayNoB0u5aAhHQJNIBWT5ftx1fZQoaAZHQHFpz987ZFpoB00iAWgIR0CTSH6AvtdBdX2UKGgGR0Bxhbx3FDOUaAdL9GgIR0CTSbTL4etCdX2UKGgGR0Bw8xQk5ZKWaAdNZAFoCEdAk0pEPpY9xXV9lChoBkdAcHDhKlHjImgHTWoBaAhHQJNK5ZJTVDt1fZQoaAZHQHJMoqXnhbZoB00WAWgIR0CTTAw22oegdX2UKGgGR0Bvud8G9pRGaAdNEQFoCEdAk0zgiV0LdHV9lChoBkdAbsx2Bas6rGgHTTEBaAhHQJNNZZNfw7V1fZQoaAZHQHDlidOIqLFoB00WAWgIR0CTTYW9lEqldX2UKGgGR0BvH1FQVKwqaAdNGgFoCEdAk02vXPJJXnV9lChoBkdAcMO7QLNOd2gHTRABaAhHQJNOJAVwgkl1fZQoaAZHQHFy0ZBLPD5oB00KAWgIR0CTTpKm8/UwdX2UKGgGR0BvZ0gKWszVaAdNAgFoCEdAk0+WrXDm83V9lChoBkdAb92M3qAz6GgHTQABaAhHQJNPxX5nDix1fZQoaAZHQHB/hkEs8PpoB01HAWgIR0CTT+aePJaJdX2UKGgGR0BzBKujh1klaAdNSQFoCEdAk0/scp9ZzXV9lChoBkdAcRTiSq2jPGgHTSYBaAhHQJNRQtZmqYJ1fZQoaAZHQGz1vJiiItVoB00mAWgIR0CTUyY6nzg/dX2UKGgGR0Bw+mXBxgiNaAdNIgFoCEdAk1RrulXRxHV9lChoBkdAcUO9a2WpqGgHS+1oCEdAk1SjI7vG63V9lChoBkdAcAYoA4n4PGgHTXIBaAhHQJNUpE8aGYd1fZQoaAZHQFA0mFJxvNxoB0u6aAhHQJNUt2+wkgR1fZQoaAZHQHBLJYHPeHloB00HAWgIR0CTVL+H8CPqdX2UKGgGR0BwJ39m6GxmaAdNUAFoCEdAk1VbG3nZCnV9lChoBkdAbo8PTXrdFmgHS/5oCEdAk1XB5kbxVnV9lChoBkdAcMQ+tKZlWmgHS/9oCEdAk1XzzVc2SHV9lChoBkdAbX+5+6RQrWgHTRABaAhHQJNWMKE384x1fZQoaAZHQHO1ikCV8kVoB00IAWgIR0CTWFol2NeddX2UKGgGR0Bw7nvBrN4aaAdNDwFoCEdAk1hqVQhwEXV9lChoBkdAcpJ53Tuv2WgHTScBaAhHQJNY/95yEL91fZQoaAZHQHFH5DVpblloB00eAWgIR0CTWQa/RE4OdX2UKGgGR0BxqKNNrTH9aAdNXAFoCEdAk1kq2SdOI3V9lChoBkdATV0xREWqLmgHS79oCEdAk1oajvd/KHV9lChoBkdAcj7RlYlpoWgHTRcBaAhHQJNaHm0VrRB1fZQoaAZHQG5/T+FUQ05oB0vvaAhHQJNbubAk9lp1fZQoaAZHQHGHnPmgam5oB00dAWgIR0CTW++irT6SdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.995, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1595c690e6cf3495a377bae67c0bf76a10f53fd87c2a0ce97cb1cebf633cab1c
3
+ size 146910
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7bb4d5617d00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7bb4d5617d90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7bb4d5617e20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7bb4d5617eb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7bb4d5617f40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7bb4d5624040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7bb4d56240d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7bb4d5624160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7bb4d56241f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7bb4d5624280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7bb4d5624310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7bb4d56243a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7bb4d5620900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1691181508924132277,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPZOT5BB/I+y0WxvTAOtL5sFZk99g2PvQAAAAAAAAAAzWxqO/bsZ7p2qau3xFVgsgYaxbrIlMg2AACAPwAAgD+apRW+NU+dP+1eC7/COOq+cZ4mvhiRlb4AAAAAAAAAAKoGUr682aU+cwocPlzMuL5XvbS8TzOvPQAAAAAAAAAAGtM6PaTpfrtIVGO8mb+IPJU3ozzu+Wq9AACAPwAAgD8zdXM+5P0hP1akvL2HVJa+qakVPi3IaL0AAAAAAAAAAHMjtr04bou7C+u8PFIGlTx4wQ89Xt99vQAAAAAAAIA/pil6vgX41jzxfoc6AqIuuQZ6a74Bw7q5AAAAAAAAgD8GqDO+cbEEuwGARzG/pjew7pP9O3FmQLAAAIA/AACAP1r5lD3Mfrs/VfrTPoA+S70+Dz89rc1VPgAAAAAAAAAAtvxfvmXuZj5LOXI+1s6Evlg5g7y1Iu08AAAAAAAAAABmPQ49Ue22Pn0n1r1bC4q+LTzKO/bfuL0AAAAAAAAAABorzr1Ix4O6iKHHuMvHDLSWb4E6kLfjNwAAgD8AAIA/8wf3vdLF4ruYR38+3QkYviQ79jyyd7Y+AACAPwAAgD/TxRq+7rXaPrVdzz3laI2+OAuevJFMKD0AAAAAAAAAAP4pl75z1Sc/smgXvrDt8L6x0BW+oiWlPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAvl3dKujiMAWyUTTkBjAF0lEdAkw2rYkE9uHV9lChoBkdAcV/4T9KmK2gHTbMBaAhHQJMN9JXhfjV1fZQoaAZHQD6+X7cfvF5oB0vPaAhHQJMO97v5P/J1fZQoaAZHQHNBixFAmiRoB00tAWgIR0CTD9u3MINWdX2UKGgGR0BxB7doFmnPaAdNBgFoCEdAkxDqo/A0sXV9lChoBkdAcHkTUiILxGgHTTABaAhHQJMRHXbuc+d1fZQoaAZHQG9BGKhtcfNoB01QAWgIR0CTEWwd8zAOdX2UKGgGR0BXJV+/gzguaAdL42gIR0CTEdjHn2ZidX2UKGgGR0BwTkysS00FaAdNAwFoCEdAkxJt9tuUEHV9lChoBkdAcuOT6zmfXmgHS/9oCEdAkxNaE8JUpHV9lChoBkdAEvFCswL3K2gHS9VoCEdAkxRX0Cih4HV9lChoBkdAcMrl18stkGgHTQ0BaAhHQJMVAp3HJcR1fZQoaAZHQF86fQKKHfxoB03oA2gIR0CTFQtZFG5MdX2UKGgGR0BynUPEsJ6ZaAdNegFoCEdAkxZeWSlnAnV9lChoBkdASUh//echDGgHS7toCEdAkxbY0dilSHV9lChoBkdAcPUbH6uW8mgHS+doCEdAkxeiZa3ZwnV9lChoBkdAbyuUWVNYbWgHTQsBaAhHQJMXtcIJJGx1fZQoaAZHQHC7XA2ycCpoB00iAWgIR0CTGBUmD15CdX2UKGgGR0A8p4tYjjaPaAdLu2gIR0CTGCxcVxjsdX2UKGgGR0BIk7sv7FbWaAdLyWgIR0CTGFuTibUgdX2UKGgGR0BwRcuoP07KaAdNNgFoCEdAkxlUgSvkinV9lChoBkdAcFzE3Kji42gHTQgBaAhHQJMaNwvQF9t1fZQoaAZHQG/nbMgU1yhoB00eAWgIR0CTG9q+JxecdX2UKGgGR0BwmZzeXRgJaAdNGQFoCEdAkxxGm1pj+nV9lChoBkdAQfe/nGKhtmgHS8JoCEdAkxz8fms/6nV9lChoBkdAcddc+7lJYmgHS/5oCEdAkx3he5WilHV9lChoBkdAcB7nanJkoWgHTRIBaAhHQJMd9mmLtNV1fZQoaAZHQEFMGdqcmShoB0vCaAhHQJMexZX+2mZ1fZQoaAZHQDMEEW69TP1oB0vIaAhHQJMfVurIYFd1fZQoaAZHQG7eSWJJoTRoB00oAWgIR0CTH2s+3YthdX2UKGgGR0BwbYSAYpDvaAdNGAFoCEdAkyCaSLZSN3V9lChoBkdAcCFrpJPIn2gHTXoBaAhHQJMgvkzXSSh1fZQoaAZHQEB6lKK508xoB0vLaAhHQJMhfvBrN4Z1fZQoaAZHQG/6tRm9QGhoB00eAWgIR0CTIZhcqvvCdX2UKGgGR0ByiZmjCYTkaAdNIwFoCEdAkyJJLdvbXnV9lChoBkdAcX/wSamXPmgHTTMBaAhHQJMiW2WpqAV1fZQoaAZHQG8TNeD3/PxoB00eAWgIR0CTI0hrnDBNdX2UKGgGR0BwESPfbblBaAdNEwFoCEdAkyXh7E5yVHV9lChoBkdAbBhbwjMV12gHS/loCEdAkya0tuk1uXV9lChoBkdAcAxMKkVN6GgHTRoBaAhHQJMm/bVSXMR1fZQoaAZHQG/TImw7kn1oB0v4aAhHQJMoOlgtvn91fZQoaAZHQHGKP2Xb/OtoB01qAWgIR0CTKO1tO2y+dX2UKGgGR0ByeyebutwKaAdNNAFoCEdAkykDEaVD8nV9lChoBkdAbSsQ6IWP92gHTQ4BaAhHQJMpDtF8XvZ1fZQoaAZHQHPATKoybhFoB00xAWgIR0CTPD8/D+BIdX2UKGgGR0Bx/Ea/ATIvaAdNPQFoCEdAkz6pRXOnmHV9lChoBkdAcpPpuuRs/WgHTS4BaAhHQJM+82l2vB91fZQoaAZHQF7gpr1uivhoB03oA2gIR0CTPxm/FirldX2UKGgGR0Byc/cvduYQaAdNAQFoCEdAkz9W/SH/LnV9lChoBkdAccxFdcB2fWgHTVUBaAhHQJM/coKD0191fZQoaAZHQHJ89B4Uvf1oB00lAWgIR0CTP4k7wKBvdX2UKGgGR0A8xjOcDr7gaAdLwGgIR0CTQiSyMUAUdX2UKGgGR0Bv3jKNhmXgaAdNEgFoCEdAk0JIBRyfc3V9lChoBkdAcRqvMKTjemgHTR8BaAhHQJNDd+DvmYB1fZQoaAZHQG0fH/95yENoB02+AWgIR0CTQ9mWt2cKdX2UKGgGR0BscVmBe5WjaAdNFQFoCEdAk0Rm0NSZSnV9lChoBkdAcmflK9PDYWgHTUIBaAhHQJNE14u9OAR1fZQoaAZHQHC4SFfzBhxoB00RAWgIR0CTROA+IMz/dX2UKGgGR0BERGi5/b0waAdL0mgIR0CTRaehf0EpdX2UKGgGR0BzNmT5ftx/aAdN4gFoCEdAk0Wosd1dPnV9lChoBkdAcBLaIvalDWgHTS0BaAhHQJNFstcv/R51fZQoaAZHQHEmyNOuaF5oB00pAWgIR0CTRi/iYLLIdX2UKGgGR0ByO9VzZHuraAdNCAFoCEdAk0dUGZ/kNnV9lChoBkdAcnhuqWC2+mgHTQUBaAhHQJNHkQEpy6t1fZQoaAZHQDM29qUNayNoB0u5aAhHQJNIBWT5ftx1fZQoaAZHQHFpz987ZFpoB00iAWgIR0CTSH6AvtdBdX2UKGgGR0Bxhbx3FDOUaAdL9GgIR0CTSbTL4etCdX2UKGgGR0Bw8xQk5ZKWaAdNZAFoCEdAk0pEPpY9xXV9lChoBkdAcHDhKlHjImgHTWoBaAhHQJNK5ZJTVDt1fZQoaAZHQHJMoqXnhbZoB00WAWgIR0CTTAw22oegdX2UKGgGR0Bvud8G9pRGaAdNEQFoCEdAk0zgiV0LdHV9lChoBkdAbsx2Bas6rGgHTTEBaAhHQJNNZZNfw7V1fZQoaAZHQHDlidOIqLFoB00WAWgIR0CTTYW9lEqldX2UKGgGR0BvH1FQVKwqaAdNGgFoCEdAk02vXPJJXnV9lChoBkdAcMO7QLNOd2gHTRABaAhHQJNOJAVwgkl1fZQoaAZHQHFy0ZBLPD5oB00KAWgIR0CTTpKm8/UwdX2UKGgGR0BvZ0gKWszVaAdNAgFoCEdAk0+WrXDm83V9lChoBkdAb92M3qAz6GgHTQABaAhHQJNPxX5nDix1fZQoaAZHQHB/hkEs8PpoB01HAWgIR0CTT+aePJaJdX2UKGgGR0BzBKujh1klaAdNSQFoCEdAk0/scp9ZzXV9lChoBkdAcRTiSq2jPGgHTSYBaAhHQJNRQtZmqYJ1fZQoaAZHQGz1vJiiItVoB00mAWgIR0CTUyY6nzg/dX2UKGgGR0Bw+mXBxgiNaAdNIgFoCEdAk1RrulXRxHV9lChoBkdAcUO9a2WpqGgHS+1oCEdAk1SjI7vG63V9lChoBkdAcAYoA4n4PGgHTXIBaAhHQJNUpE8aGYd1fZQoaAZHQFA0mFJxvNxoB0u6aAhHQJNUt2+wkgR1fZQoaAZHQHBLJYHPeHloB00HAWgIR0CTVL+H8CPqdX2UKGgGR0BwJ39m6GxmaAdNUAFoCEdAk1VbG3nZCnV9lChoBkdAbo8PTXrdFmgHS/5oCEdAk1XB5kbxVnV9lChoBkdAcMQ+tKZlWmgHS/9oCEdAk1XzzVc2SHV9lChoBkdAbX+5+6RQrWgHTRABaAhHQJNWMKE384x1fZQoaAZHQHO1ikCV8kVoB00IAWgIR0CTWFol2NeddX2UKGgGR0Bw7nvBrN4aaAdNDwFoCEdAk1hqVQhwEXV9lChoBkdAcpJ53Tuv2WgHTScBaAhHQJNY/95yEL91fZQoaAZHQHFH5DVpblloB00eAWgIR0CTWQa/RE4OdX2UKGgGR0BxqKNNrTH9aAdNXAFoCEdAk1kq2SdOI3V9lChoBkdATV0xREWqLmgHS79oCEdAk1oajvd/KHV9lChoBkdAcj7RlYlpoWgHTRcBaAhHQJNaHm0VrRB1fZQoaAZHQG5/T+FUQ05oB0vvaAhHQJNbubAk9lp1fZQoaAZHQHGHnPmgam5oB00dAWgIR0CTW++irT6SdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 248,
55
+ "n_steps": 1024,
56
+ "gamma": 0.995,
57
+ "gae_lambda": 0.98,
58
+ "ent_coef": 0.01,
59
+ "vf_coef": 0.5,
60
+ "max_grad_norm": 0.5,
61
+ "batch_size": 64,
62
+ "n_epochs": 4,
63
+ "clip_range": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
66
+ },
67
+ "clip_range_vf": null,
68
+ "normalize_advantage": true,
69
+ "target_kl": null,
70
+ "observation_space": {
71
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
72
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "dtype": "float32",
74
+ "bounded_below": "[ True True True True True True True True]",
75
+ "bounded_above": "[ True True True True True True True True]",
76
+ "_shape": [
77
+ 8
78
+ ],
79
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
80
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
81
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
82
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
83
+ "_np_random": null
84
+ },
85
+ "action_space": {
86
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
87
+ ":serialized:": "gAWV/QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgLjAJpOJSJiIeUUpQoSwNoD05OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
88
+ "n": "4",
89
+ "start": "0",
90
+ "_shape": [],
91
+ "dtype": "int64",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 16,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0651de37abfd80dd49e7c0a4ba2592b87efa8ebcb5c5cd1a55794ea75d8a9fb2
3
+ size 88057
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352a7f79b736bdaf28a7e45c45de6823bc105f0c5fd5a55ed8067ffe5f9ff296
3
+ size 43329
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (161 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 260.3350571, "std_reward": 29.55654619381805, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-04T21:10:14.185156"}