Crystalcareai commited on
Commit
d45d23a
1 Parent(s): 63fd118

Upload configuration_gemmoe.py

Browse files
Files changed (1) hide show
  1. configuration_gemmoe.py +157 -0
configuration_gemmoe.py ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Gemmoe model configuration"""
16
+
17
+ from transformers.configuration_utils import PretrainedConfig
18
+ from transformers.utils import logging
19
+
20
+
21
+ logger = logging.get_logger(__name__)
22
+
23
+ GEMMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
+ "Crystalcareai/Gemmoe-7b-pre": "https://huggingface.co/Crystalcareai/Gemmoe-7b-pre/blob/main/config.json",
25
+ }
26
+
27
+
28
+ class GemmoeConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`GemmoeModel`]. It is used to instantiate a Gemmoe
31
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
32
+ defaults will yield a similar configuration to that of the Gemmoe-7B.
33
+
34
+ e.g. [mhenrichsen/gemmoe-7b](https://huggingface.co/mhenrichsen/gemmoe-7b)
35
+
36
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
37
+ documentation from [`PretrainedConfig`] for more information.
38
+
39
+ Args:
40
+ vocab_size (`int`, *optional*, defaults to 256000):
41
+ Vocabulary size of the Gemmoe model. Defines the number of different tokens that can be represented by the
42
+ `inputs_ids` passed when calling [`GemmoeModel`]
43
+ hidden_size (`int`, *optional*, defaults to 3072):
44
+ Dimension of the hidden representations.
45
+ intermediate_size (`int`, *optional*, defaults to 24576):
46
+ Dimension of the MLP representations.
47
+ num_hidden_layers (`int`, *optional*, defaults to 28):
48
+ Number of hidden layers in the Transformer decoder.
49
+ num_attention_heads (`int`, *optional*, defaults to 16):
50
+ Number of attention heads for each attention layer in the Transformer decoder.
51
+ num_key_value_heads (`int`, *optional*, defaults to 16):
52
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
+ by meanpooling all the original heads within that group. For more details checkout [this
57
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
58
+ `num_attention_heads`.
59
+ head_dim (`int`, *optional*, defaults to 256):
60
+ The attention head dimension.
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
62
+ The non-linear activation function (function or string) in the decoder.
63
+ max_position_embeddings (`int`, *optional*, defaults to 8192):
64
+ The maximum sequence length that this model might ever be used with.
65
+ initializer_range (`float`, *optional*, defaults to 0.02):
66
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
+ rms_norm_eps (`float`, *optional*, defaults to 1e-6):
68
+ The epsilon used by the rms normalization layers.
69
+ use_cache (`bool`, *optional*, defaults to `True`):
70
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
71
+ relevant if `config.is_decoder=True`.
72
+ pad_token_id (`int`, *optional*, defaults to 0):
73
+ Padding token id.
74
+ eos_token_id (`int`, *optional*, defaults to 1):
75
+ End of stream token id.
76
+ bos_token_id (`int`, *optional*, defaults to 2):
77
+ Beginning of stream token id.
78
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
79
+ Whether to tie weight embeddings
80
+ rope_theta (`float`, *optional*, defaults to 10000.0):
81
+ The base period of the RoPE embeddings.
82
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
83
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
84
+ attention_dropout (`float`, *optional*, defaults to 0.0):
85
+ The dropout ratio for the attention probabilities.
86
+ num_experts_per_tok (`int`, *optional*, defaults to 2):
87
+ The number of experts used in the sparse mixture of experts layer.
88
+ num_local_experts (`int`, *optional*, defaults to 8):
89
+ The number of local experts used in the sparse mixture of experts layer.
90
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.01):
91
+ The coefficient for the auxiliary loss of the router.
92
+ output_router_logits (`bool`, *optional*, defaults to `False`):
93
+ Whether or not to output the logits of the routers. They are useful for computing the router loss, and
94
+ should not be returned during inference.
95
+
96
+ ```python
97
+ >>> from transformers import GemmoeModel, GemmoeConfig
98
+
99
+ >>> # Initializing a Gemmoe gemmoe-7b style configuration
100
+ >>> configuration = GemmoeConfig()
101
+
102
+ >>> # Initializing a model from the gemmoe-7b style configuration
103
+ >>> model = GemmoeModel(configuration)
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "gemmoe"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=256000,
115
+ hidden_size=3072,
116
+ intermediate_size=24576,
117
+ num_hidden_layers=28,
118
+ num_attention_heads=16,
119
+ num_key_value_heads=16,
120
+ head_dim=256,
121
+ hidden_act="gelu",
122
+ max_position_embeddings=8192,
123
+ initializer_range=0.02,
124
+ rms_norm_eps=1e-6,
125
+ use_cache=True,
126
+ pad_token_id=0,
127
+ eos_token_id=1,
128
+ bos_token_id=2,
129
+ tie_word_embeddings=True,
130
+ rope_theta=10000.0,
131
+ attention_bias=False,
132
+ attention_dropout=0.0,
133
+ **kwargs,
134
+ ):
135
+ self.vocab_size = vocab_size
136
+ self.max_position_embeddings = max_position_embeddings
137
+ self.hidden_size = hidden_size
138
+ self.intermediate_size = intermediate_size
139
+ self.num_hidden_layers = num_hidden_layers
140
+ self.num_attention_heads = num_attention_heads
141
+ self.head_dim = head_dim
142
+ self.num_key_value_heads = num_key_value_heads
143
+ self.hidden_act = hidden_act
144
+ self.initializer_range = initializer_range
145
+ self.rms_norm_eps = rms_norm_eps
146
+ self.use_cache = use_cache
147
+ self.rope_theta = rope_theta
148
+ self.attention_bias = attention_bias
149
+ self.attention_dropout = attention_dropout
150
+
151
+ super().__init__(
152
+ pad_token_id=pad_token_id,
153
+ bos_token_id=bos_token_id,
154
+ eos_token_id=eos_token_id,
155
+ tie_word_embeddings=tie_word_embeddings,
156
+ **kwargs,
157
+ )