File size: 6,561 Bytes
d507e0c
 
 
2892566
d507e0c
 
ce8a2da
d507e0c
 
2892566
d507e0c
2892566
 
d507e0c
 
 
 
a7a47b9
d507e0c
ce8a2da
a7a47b9
2892566
a7a47b9
ce8a2da
 
8b9bd5a
d507e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
562cf21
d507e0c
2892566
d507e0c
 
2892566
d507e0c
 
 
 
 
 
 
 
 
 
2892566
 
d507e0c
 
2892566
 
d507e0c
 
 
 
 
 
 
 
 
 
8b9bd5a
 
 
2892566
d507e0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7a47b9
d507e0c
 
 
ce8a2da
d507e0c
562cf21
a7a47b9
 
562cf21
d507e0c
ce8a2da
2892566
ce8a2da
 
d507e0c
ce8a2da
2892566
a7a47b9
ce8a2da
2892566
a7a47b9
d507e0c
8b9bd5a
d507e0c
 
ce8a2da
 
a7a47b9
ce8a2da
 
 
a7a47b9
ce8a2da
 
d507e0c
562cf21
2892566
a7a47b9
 
 
 
 
 
ce8a2da
a7a47b9
 
 
ce8a2da
a7a47b9
 
ce8a2da
a7a47b9
 
ce8a2da
a7a47b9
ce8a2da
a7a47b9
 
ce8a2da
a7a47b9
 
 
 
 
ce8a2da
a7a47b9
 
 
 
 
ce8a2da
a7a47b9
 
 
 
 
ce8a2da
a7a47b9
 
ce8a2da
2892566
 
ce8a2da
2892566
a7a47b9
ce8a2da
d507e0c
 
ce8a2da
8b9bd5a
ce8a2da
d507e0c
 
2892566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig
from datasets import load_dataset
from transformers import TrainingArguments
from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
from trl import SFTTrainer
from peft import LoraConfig
from torch.nn import CrossEntropyLoss
import time
import gc

random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)

dataset = load_dataset("HuggingFaceH4/orca-math-word-problems-200k", split="train_sft").select(range(1000))


n_ahead_talk_global = 4
n_passes_global = 1
n_ahead_global = 4
# n_examples = 1000
# full_batch_size = 8

def model_init(params):
    original = False
    if params is None:
        params = {}
    else:
        params = params.params
    # save params to file
    n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
    n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
    n_passes = params.get("n_passes", n_passes_global if not original else 1)
    gumbel_temperature = params.get("gumbel_temperature", 1)
    use_start_thought_token = params.get("use_start_thought_token", True)
    use_end_thought_token = params.get("use_end_thought_token", True)
    include_policy_loss = params.get("include_policy_loss", True)
    gumbel_detach = params.get("gumbel_detach", True)
    merged_talk_heads = params.get("merged_talk_heads", True)
    residual_think_head = params.get("residual_think_head", False)
    optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)

    model_id = "Crystalcareai/Quiet-Star-Custom"
    tokenizer_id = model_id
    print("Loading model")

    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
        max_thoughts=n_ahead + n_ahead_talk + 1,
        merged_talk_heads=merged_talk_heads,
        merged_lm_and_talk_heads=False,
        merged_lm_and_think_heads=True,
        use_concat_talk_head=True,
        use_shallow_think=True,
        use_shallow_talk=False,
        use_complex_think_head=False,
        use_complex_talk_head=True,
        use_weighted_talk_head=True,
        trust_remote_code=True,
        device_map="auto",
    )
    print("Loaded model")

    tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
    tokenizer.pad_token_id = tokenizer.eos_token_id

    special_tokens_to_add = []
    if model.use_start_thought_token:
        special_tokens_to_add.append("<|startthought|>")
    if model.use_end_thought_token:
        special_tokens_to_add.append("<|endthought|>")
    if special_tokens_to_add:
        tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
    model.tokenizer = tokenizer
    for name, module in model.named_modules():
        if "embed" in name:
            print(module, flush=True)

    model.gumbel_detach = gumbel_detach
    model.include_policy_loss = include_policy_loss
    model.use_end_thought_token = use_end_thought_token
    model.use_start_thought_token = use_start_thought_token
    model.n_ahead = n_ahead
    model.n_ahead_talk = n_ahead_talk
    model.n_passes = n_passes
    model.residual_think_head = residual_think_head
    model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
    model.gumbel_temperature = gumbel_temperature
    model.original_mode = original
    model.config_params = params
    model.run_start = int(time.time())
    model.train()
    return model

max_seq_length = 1024
run_id = int(time.time())
training_args = TrainingArguments(
    output_dir="./out",
    num_train_epochs=1,
    per_device_train_batch_size=1,
    gradient_checkpointing=False,
    gradient_accumulation_steps=8,
    optim="adamw_torch_fused",
    logging_steps=1,
    save_strategy="steps",
    save_steps=100,
    max_steps=-1,
    # auto_find_batch_size=True,
    weight_decay=0.001,
    bf16=True,
    
    tf32=True,
    learning_rate=2e-10,
    max_grad_norm=0,
    warmup_steps=20,
    lr_scheduler_type="cosine",
    push_to_hub=False,
    report_to="wandb"
)

peft_config = LoraConfig(
    r = 8, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules =["q_proj", "v_proj"],
    lora_alpha = 32,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none", 
    use_dora=True,
    task_type="CAUSAL_LM"
)

torch.autograd.set_detect_anomaly(True)

# class CustomSFTTrainer(SFTTrainer):
#     def __init__(self, *args, **kwargs):
#         super().__init__(*args, **kwargs)
#         self.beta = 0.9  # momentum factor
#         self.clip_factor = 1.0  # clipping factor
#         self.moving_avg = 0.0

#     def training_step(self, model, inputs):
#         model.train()
#         inputs = self._prepare_inputs(inputs)

#         outputs = model(**inputs)
#         loss = outputs.loss if isinstance(outputs, dict) else outputs[0]

#         if self.args.gradient_accumulation_steps > 1:
#             loss = loss / self.args.gradient_accumulation_steps

#         loss.backward()

#         # Compute gradients and their norm
#         grad_norm = torch.sqrt(sum(p.grad.data.norm().to(model.device)**2 for p in model.parameters() if p.grad is not None))

#         # Update moving average and apply gradient clipping
#         if self.state.global_step == 0:
#             self.moving_avg = grad_norm
#         else:
#             self.moving_avg = self.beta * self.moving_avg + (1 - self.beta) * grad_norm

#         if grad_norm > self.clip_factor * self.moving_avg:
#             clip_coef = (self.clip_factor * self.moving_avg / grad_norm).item()
#             for param in model.parameters():
#                 if param.grad is not None:
#                     param.grad.data.mul_(clip_coef)

#         if (self.state.global_step + 1) % self.args.gradient_accumulation_steps == 0:
#             self.optimizer.step()
#             self.lr_scheduler.step()
#             model.zero_grad()
#             self.state.global_step += 1

#         # Return the loss as a Tensor
#         return loss
    
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = model_init(None)  

trainer = SFTTrainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=model.tokenizer,
    max_seq_length=max_seq_length,
    peft_config=peft_config,
)

trainer.train()