Quiet-Star-Custom / train-h100-sharegpt-sft.py
Crystalcareai's picture
Update train-h100-sharegpt-sft.py
a7a47b9 verified
import torch
torch.backends.cuda.matmul.allow_tf32 = True
import random
from transformers import AutoTokenizer, AutoModelForCausalLM, TextGenerationPipeline, AutoConfig, BitsAndBytesConfig
from datasets import load_dataset
from transformers import TrainingArguments
from accelerate import infer_auto_device_map, init_empty_weights, dispatch_model
from trl import SFTTrainer
from peft import LoraConfig
from torch.nn import CrossEntropyLoss
import time
import gc
random_seed = 42
torch.manual_seed(random_seed)
random.seed(random_seed)
dataset = load_dataset("HuggingFaceH4/orca-math-word-problems-200k", split="train_sft").select(range(1000))
n_ahead_talk_global = 4
n_passes_global = 1
n_ahead_global = 4
# n_examples = 1000
# full_batch_size = 8
def model_init(params):
original = False
if params is None:
params = {}
else:
params = params.params
# save params to file
n_ahead = params.get("n_ahead", n_ahead_global if not original else 1)
n_ahead_talk = params.get("n_ahead_talk", n_ahead_talk_global if not original else 1)
n_passes = params.get("n_passes", n_passes_global if not original else 1)
gumbel_temperature = params.get("gumbel_temperature", 1)
use_start_thought_token = params.get("use_start_thought_token", True)
use_end_thought_token = params.get("use_end_thought_token", True)
include_policy_loss = params.get("include_policy_loss", True)
gumbel_detach = params.get("gumbel_detach", True)
merged_talk_heads = params.get("merged_talk_heads", True)
residual_think_head = params.get("residual_think_head", False)
optimize_lm_head_only_at_start = params.get("optimize_lm_head_only_at_start", False)
model_id = "Crystalcareai/Quiet-Star-Custom"
tokenizer_id = model_id
print("Loading model")
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32,
max_thoughts=n_ahead + n_ahead_talk + 1,
merged_talk_heads=merged_talk_heads,
merged_lm_and_talk_heads=False,
merged_lm_and_think_heads=True,
use_concat_talk_head=True,
use_shallow_think=True,
use_shallow_talk=False,
use_complex_think_head=False,
use_complex_talk_head=True,
use_weighted_talk_head=True,
trust_remote_code=True,
device_map="auto",
)
print("Loaded model")
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id, truncation=True, padding_side="right")
tokenizer.pad_token_id = tokenizer.eos_token_id
special_tokens_to_add = []
if model.use_start_thought_token:
special_tokens_to_add.append("<|startthought|>")
if model.use_end_thought_token:
special_tokens_to_add.append("<|endthought|>")
if special_tokens_to_add:
tokenizer.add_special_tokens({"additional_special_tokens": special_tokens_to_add})
model.tokenizer = tokenizer
for name, module in model.named_modules():
if "embed" in name:
print(module, flush=True)
model.gumbel_detach = gumbel_detach
model.include_policy_loss = include_policy_loss
model.use_end_thought_token = use_end_thought_token
model.use_start_thought_token = use_start_thought_token
model.n_ahead = n_ahead
model.n_ahead_talk = n_ahead_talk
model.n_passes = n_passes
model.residual_think_head = residual_think_head
model.optimize_lm_head_only_at_start = optimize_lm_head_only_at_start
model.gumbel_temperature = gumbel_temperature
model.original_mode = original
model.config_params = params
model.run_start = int(time.time())
model.train()
return model
max_seq_length = 1024
run_id = int(time.time())
training_args = TrainingArguments(
output_dir="./out",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_checkpointing=False,
gradient_accumulation_steps=8,
optim="adamw_torch_fused",
logging_steps=1,
save_strategy="steps",
save_steps=100,
max_steps=-1,
# auto_find_batch_size=True,
weight_decay=0.001,
bf16=True,
tf32=True,
learning_rate=2e-10,
max_grad_norm=0,
warmup_steps=20,
lr_scheduler_type="cosine",
push_to_hub=False,
report_to="wandb"
)
peft_config = LoraConfig(
r = 8, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules =["q_proj", "v_proj"],
lora_alpha = 32,
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none",
use_dora=True,
task_type="CAUSAL_LM"
)
torch.autograd.set_detect_anomaly(True)
# class CustomSFTTrainer(SFTTrainer):
# def __init__(self, *args, **kwargs):
# super().__init__(*args, **kwargs)
# self.beta = 0.9 # momentum factor
# self.clip_factor = 1.0 # clipping factor
# self.moving_avg = 0.0
# def training_step(self, model, inputs):
# model.train()
# inputs = self._prepare_inputs(inputs)
# outputs = model(**inputs)
# loss = outputs.loss if isinstance(outputs, dict) else outputs[0]
# if self.args.gradient_accumulation_steps > 1:
# loss = loss / self.args.gradient_accumulation_steps
# loss.backward()
# # Compute gradients and their norm
# grad_norm = torch.sqrt(sum(p.grad.data.norm().to(model.device)**2 for p in model.parameters() if p.grad is not None))
# # Update moving average and apply gradient clipping
# if self.state.global_step == 0:
# self.moving_avg = grad_norm
# else:
# self.moving_avg = self.beta * self.moving_avg + (1 - self.beta) * grad_norm
# if grad_norm > self.clip_factor * self.moving_avg:
# clip_coef = (self.clip_factor * self.moving_avg / grad_norm).item()
# for param in model.parameters():
# if param.grad is not None:
# param.grad.data.mul_(clip_coef)
# if (self.state.global_step + 1) % self.args.gradient_accumulation_steps == 0:
# self.optimizer.step()
# self.lr_scheduler.step()
# model.zero_grad()
# self.state.global_step += 1
# # Return the loss as a Tensor
# return loss
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model_init(None)
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=model.tokenizer,
max_seq_length=max_seq_length,
peft_config=peft_config,
)
trainer.train()