Upload folder using huggingface_hub
Browse files- README.md +257 -0
- config.json +30 -0
- mergekit_moe_config.yml +206 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +1 -0
- special_tokens_map.json +29 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +48 -0
README.md
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- moe
|
5 |
+
- frankenmoe
|
6 |
+
- merge
|
7 |
+
- mergekit
|
8 |
+
- lazymergekit
|
9 |
+
- mlabonne/NeuralBeagle14-7B
|
10 |
+
- fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser
|
11 |
+
- mlabonne/Marcoro14-7B-slerp
|
12 |
+
base_model:
|
13 |
+
- mlabonne/NeuralBeagle14-7B
|
14 |
+
- fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser
|
15 |
+
- mlabonne/Marcoro14-7B-slerp
|
16 |
+
---
|
17 |
+
|
18 |
+
# CultriX-MoE-BF16
|
19 |
+
|
20 |
+
CultriX-MoE-BF16 is a Mixure of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
|
21 |
+
* [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B)
|
22 |
+
* [fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser)
|
23 |
+
* [mlabonne/Marcoro14-7B-slerp](https://huggingface.co/mlabonne/Marcoro14-7B-slerp)
|
24 |
+
|
25 |
+
## 🧩 Configuration
|
26 |
+
|
27 |
+
```yaml
|
28 |
+
base_model: "EmbeddedLLM/Mistral-7B-Merge-14-v0.2"
|
29 |
+
gate_mode: hidden
|
30 |
+
dtype: bfloat16
|
31 |
+
experts:
|
32 |
+
- source_model: "mlabonne/NeuralBeagle14-7B"
|
33 |
+
positive_prompts:
|
34 |
+
- "Create a story based on"
|
35 |
+
- "Debate the topic of"
|
36 |
+
- "Come up with some arguments"
|
37 |
+
- "Provide me with instructions on"
|
38 |
+
- "Interpret the sentiment"
|
39 |
+
- "Interpret and execute these cooking instructions"
|
40 |
+
- "Craft a persuasive argument"
|
41 |
+
- "Analyze the motivations"
|
42 |
+
- "Construct a detailed plan for"
|
43 |
+
- "Narrate an event from multiple perspectives."
|
44 |
+
- "Formulate a response"
|
45 |
+
- "Write a script for a short play"
|
46 |
+
- "Generate a sequence of instructions to teach a skill."
|
47 |
+
- "Solve this riddle"
|
48 |
+
- "Create an engaging story"
|
49 |
+
- "Write a fictional"
|
50 |
+
- "Propose a solution to a social issue"
|
51 |
+
- "Develop a dialogue"
|
52 |
+
- "Create a step-by-step guide"
|
53 |
+
- "Devise a strategy"
|
54 |
+
- "Write a narrative"
|
55 |
+
- "Tell me how to"
|
56 |
+
- "Explain the concept of"
|
57 |
+
- "Give an overview of"
|
58 |
+
- "Compare and contrast between"
|
59 |
+
- "Provide information about"
|
60 |
+
- "Help me understand"
|
61 |
+
- "Summarize"
|
62 |
+
- "Make a recommendation on"
|
63 |
+
- "Answer this question"
|
64 |
+
- "How do you approach"
|
65 |
+
- "Explain the concept of"
|
66 |
+
- "Give an overview of"
|
67 |
+
- "Provide information about"
|
68 |
+
- "Help me understand the principles of"
|
69 |
+
- "Summarize the key components of"
|
70 |
+
- "Make a recommendation on how to"
|
71 |
+
- "Answer this question:"
|
72 |
+
negative_prompts:
|
73 |
+
- "Provide in-depth information about quantum computing."
|
74 |
+
- "Explain the inner workings of an internal combustion engine."
|
75 |
+
- "Give a detailed tutorial on advanced calculus."
|
76 |
+
- "Summarize the latest research in genetic engineering."
|
77 |
+
- "Interpret financial markets and stock trends."
|
78 |
+
- "Analyze the chemical composition of"
|
79 |
+
- "Develop a blueprint for."
|
80 |
+
- "Offer a critique of a modern art piece."
|
81 |
+
- "Provide a technical review of"
|
82 |
+
- "Conduct a linguistic analysis of an ancient language."
|
83 |
+
- "Write a user manual for advanced medical equipment."
|
84 |
+
- "Give a step-by-step guide on piloting an aircraft."
|
85 |
+
- "Conduct an in-depth analysis of this code"
|
86 |
+
- "Explain the physics behind black holes."
|
87 |
+
- "Provide a strategy for managing a cyber attack"
|
88 |
+
- "Develop an algorithm for predictive analytics in finance."
|
89 |
+
- "Provide information about advanced programming algorithms."
|
90 |
+
- "Help me understand the details of this code"
|
91 |
+
- "Summarize the process of cellular respiration."
|
92 |
+
- "Improve the security of"
|
93 |
+
- "What are the latest advancements in artificial intelligence?"
|
94 |
+
- "Provide detailed technical coding solutions."
|
95 |
+
- "Analyze complex scientific data and statistics."
|
96 |
+
- "Offer medical diagnoses based on symptoms."
|
97 |
+
- "Conduct a detailed financial audit of a company."
|
98 |
+
- "Perform real-time translation of multiple languages."
|
99 |
+
- "Create high-resolution graphic designs."
|
100 |
+
- "Develop complex mathematical proofs."
|
101 |
+
- "Offer legal advice on specific cases."
|
102 |
+
- "Write a detailed manual on advanced mechanical engineering."
|
103 |
+
- "Conduct an in-depth psychological assessment."
|
104 |
+
- "Perform a security analysis of a computer network."
|
105 |
+
- "Compose an original piece of music."
|
106 |
+
- "Plan and execute a scientific experiment."
|
107 |
+
- "Provide professional career counseling."
|
108 |
+
- "Develop a complex database management system."
|
109 |
+
- "Write a software program for data analysis."
|
110 |
+
- "Give expert advice on cyber"
|
111 |
+
- "Conduct a pentesting security audit"
|
112 |
+
- source_model: "fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser"
|
113 |
+
positive_prompts:
|
114 |
+
- "Provide step-by-step coding instructions for..."
|
115 |
+
- "Draft a function with detailed steps in [language]"
|
116 |
+
- "Guide me through coding a simple [type of application or script]"
|
117 |
+
- "Recommend best practices for code implementation in [context]"
|
118 |
+
- "Generate a regex pattern for extracting [specific data]"
|
119 |
+
- "Create a regex for matching [pattern]"
|
120 |
+
- "Explain the purpose of this regex pattern"
|
121 |
+
- "Compose regex for [specific use case]"
|
122 |
+
- "Annotate this code with detailed comments for each line"
|
123 |
+
- "Add explanatory comments to this script"
|
124 |
+
- "Comment on each part of this code for clarity"
|
125 |
+
- "Develop a script to [accomplish task]"
|
126 |
+
- "Design a database schema for [specific use case]"
|
127 |
+
- "Outline secure methods for [specific operation]"
|
128 |
+
- "Guide on optimizing [specific aspect] in this code"
|
129 |
+
- "Refactor this code for better readability and efficiency"
|
130 |
+
- "Compare and contrast these code snippets"
|
131 |
+
- "Identify the programming language of this snippet"
|
132 |
+
- "Demonstrate the usage of [specific tool/library/API]"
|
133 |
+
- "Show implementation steps for this [feature/concept]"
|
134 |
+
- "Teach how to use [specific tool/library/framework]"
|
135 |
+
- "Generate a README file for this project"
|
136 |
+
- "Create a manual page for [specific tool/command]"
|
137 |
+
- "Produce comprehensive documentation for this code"
|
138 |
+
- "Build detailed documentation for [specific module]"
|
139 |
+
- "Explain the underlying concept of this code snippet"
|
140 |
+
- "Propose enhancements for this script"
|
141 |
+
- "Suggest improvements for this API call integration"
|
142 |
+
- "Diagnose and solve this coding issue"
|
143 |
+
- "Demonstrate robust error handling in this code"
|
144 |
+
- "Debug and resolve issues in this script"
|
145 |
+
- "Design a user-friendly GUI for this script's functionality"
|
146 |
+
- "Detail the deployment process for this application"
|
147 |
+
- "Deploy an app designed to [perform function]"
|
148 |
+
- "Set up a web service for [specific purpose]"
|
149 |
+
- "Develop a website with [specific features]"
|
150 |
+
- "Craft a webpage showcasing [specific content]"
|
151 |
+
- "Illustrate data flow in this code architecture"
|
152 |
+
- "Convert this code from [language A] to [language B]"
|
153 |
+
- "Translate this script into [different programming language]"
|
154 |
+
- "Explain resource management techniques in [context]"
|
155 |
+
- "Build a basic API endpoint for [functionality]"
|
156 |
+
- "Strategies to enhance scalability in [context]"
|
157 |
+
- "Conduct a security review for this code"
|
158 |
+
- "Enhance security measures in [application/module]"
|
159 |
+
- "Set up a development environment for [language/framework]"
|
160 |
+
- "Visualize data from [specific dataset]"
|
161 |
+
- "Generate a dataset for [specific use case]"
|
162 |
+
- "Scripting guide for automating [task/process]"
|
163 |
+
- "Utilize this code for [specific purpose]"
|
164 |
+
- "Principles of object-oriented programming in [language]"
|
165 |
+
- "Create a mobile-responsive layout for this web app"
|
166 |
+
- "Explain the debugging process for this code"
|
167 |
+
- "Compose code to accomplish [task]"
|
168 |
+
- "Guidance on writing code for [specific purpose]"
|
169 |
+
- "I need a script for [specific function]"
|
170 |
+
- "Clarify the functionality of this code"
|
171 |
+
- "What is the purpose of this code segment?"
|
172 |
+
- "Enhance this code for [specific improvement]"
|
173 |
+
- "Develop a program that [solves problem]"
|
174 |
+
- "Code needed for [specific task]"
|
175 |
+
- "Program a solution for [problem statement]"
|
176 |
+
- "Enhance this function's performance by..."
|
177 |
+
- "Refactor code for better readability in [context]"
|
178 |
+
- "Craft a custom function for [specific requirement]"
|
179 |
+
- "Reduce computational complexity in this algorithm by..."
|
180 |
+
- "Extend the codebase to include [new feature]"
|
181 |
+
- "Incorporate this API into an existing application"
|
182 |
+
- "Assist in troubleshooting and bug fixing for [issue]"
|
183 |
+
- "Review and prep this code for deployment"
|
184 |
+
- "Analyze error logs for potential issues in [context]"
|
185 |
+
- "Create unit tests for [module/component]"
|
186 |
+
- "Evaluate methodologies for [problem-solving]"
|
187 |
+
- "Research [topic] online"
|
188 |
+
- "Utilize the [plugin/tool] to achieve [result]"
|
189 |
+
- "Design an efficient search algorithm for [data type]"
|
190 |
+
- "Create a web crawler for [specific data extraction]"
|
191 |
+
- "Application of web sockets in [real-time scenario]"
|
192 |
+
- "Guide to integrating a third-party library in [framework]"
|
193 |
+
- "Best practices in API design for [application type]"
|
194 |
+
negative_prompts:
|
195 |
+
- "Provide a detailed analysis of historical events."
|
196 |
+
- "Give medical advice for treating a specific illness."
|
197 |
+
- "Write a comprehensive review of a novel."
|
198 |
+
- "Explain legal implications of a contract."
|
199 |
+
- "Develop a marketing strategy for a new product."
|
200 |
+
- "Offer financial advice for stock investments."
|
201 |
+
- "Create a recipe for a gourmet dish."
|
202 |
+
- "Teach a foreign language lesson."
|
203 |
+
- "Compose a symphony or musical piece."
|
204 |
+
- "Provide workout plans and fitness coaching."
|
205 |
+
- "Conduct a psychological analysis of a character."
|
206 |
+
- "Write a script for a movie or play."
|
207 |
+
- "Design a blueprint for architectural structures."
|
208 |
+
- "Give a tutorial on how to paint a landscape."
|
209 |
+
- "Explain quantum physics theories."
|
210 |
+
- "Offer career counseling and resume writing tips."
|
211 |
+
- "Teach how to repair a car engine."
|
212 |
+
- "Plan a travel itinerary for a world tour."
|
213 |
+
- "Guide on how to grow organic vegetables."
|
214 |
+
- "Discuss political strategies for an election campaign."
|
215 |
+
- source_model: "mlabonne/Marcoro14-7B-slerp"
|
216 |
+
positive_prompts:
|
217 |
+
- "Generate a creative story based on these keywords."
|
218 |
+
- "Explain a complex topic in simple terms"
|
219 |
+
- "Provide a detailed summary of"
|
220 |
+
- "Answer this question with factual accuracy"
|
221 |
+
- "Explain the historical significance of"
|
222 |
+
- "Provide a truthful and detailed account of"
|
223 |
+
- "Develop a strategy for solving a practical problem."
|
224 |
+
- "Explain the reasoning behind"
|
225 |
+
- "Provide an analysis of a moral dilemma with possible solutions."
|
226 |
+
negative_prompts:
|
227 |
+
- "imathematical problem-solving."
|
228 |
+
- "scientific theory explanations."
|
229 |
+
- "high-level abstract reasoning tasks."
|
230 |
+
- "professional advice in specialized fields like law or medicine."
|
231 |
+
- "provide me with a coding solution for"
|
232 |
+
- "Academic research"
|
233 |
+
```
|
234 |
+
|
235 |
+
## 💻 Usage
|
236 |
+
|
237 |
+
```python
|
238 |
+
!pip install -qU transformers bitsandbytes accelerate
|
239 |
+
|
240 |
+
from transformers import AutoTokenizer
|
241 |
+
import transformers
|
242 |
+
import torch
|
243 |
+
|
244 |
+
model = "CultriX/CultriX-MoE-BF16"
|
245 |
+
|
246 |
+
tokenizer = AutoTokenizer.from_pretrained(model)
|
247 |
+
pipeline = transformers.pipeline(
|
248 |
+
"text-generation",
|
249 |
+
model=model,
|
250 |
+
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
|
251 |
+
)
|
252 |
+
|
253 |
+
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
|
254 |
+
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
255 |
+
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
|
256 |
+
print(outputs[0]["generated_text"])
|
257 |
+
```
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "EmbeddedLLM/Mistral-7B-Merge-14-v0.2",
|
3 |
+
"architectures": [
|
4 |
+
"MixtralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mixtral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_experts_per_tok": 2,
|
17 |
+
"num_hidden_layers": 32,
|
18 |
+
"num_key_value_heads": 8,
|
19 |
+
"num_local_experts": 3,
|
20 |
+
"output_router_logits": false,
|
21 |
+
"rms_norm_eps": 1e-05,
|
22 |
+
"rope_theta": 10000.0,
|
23 |
+
"router_aux_loss_coef": 0.001,
|
24 |
+
"sliding_window": null,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.36.2",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 32000
|
30 |
+
}
|
mergekit_moe_config.yml
ADDED
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
base_model: "EmbeddedLLM/Mistral-7B-Merge-14-v0.2"
|
3 |
+
gate_mode: hidden
|
4 |
+
dtype: bfloat16
|
5 |
+
experts:
|
6 |
+
- source_model: "mlabonne/NeuralBeagle14-7B"
|
7 |
+
positive_prompts:
|
8 |
+
- "Create a story based on"
|
9 |
+
- "Debate the topic of"
|
10 |
+
- "Come up with some arguments"
|
11 |
+
- "Provide me with instructions on"
|
12 |
+
- "Interpret the sentiment"
|
13 |
+
- "Interpret and execute these cooking instructions"
|
14 |
+
- "Craft a persuasive argument"
|
15 |
+
- "Analyze the motivations"
|
16 |
+
- "Construct a detailed plan for"
|
17 |
+
- "Narrate an event from multiple perspectives."
|
18 |
+
- "Formulate a response"
|
19 |
+
- "Write a script for a short play"
|
20 |
+
- "Generate a sequence of instructions to teach a skill."
|
21 |
+
- "Solve this riddle"
|
22 |
+
- "Create an engaging story"
|
23 |
+
- "Write a fictional"
|
24 |
+
- "Propose a solution to a social issue"
|
25 |
+
- "Develop a dialogue"
|
26 |
+
- "Create a step-by-step guide"
|
27 |
+
- "Devise a strategy"
|
28 |
+
- "Write a narrative"
|
29 |
+
- "Tell me how to"
|
30 |
+
- "Explain the concept of"
|
31 |
+
- "Give an overview of"
|
32 |
+
- "Compare and contrast between"
|
33 |
+
- "Provide information about"
|
34 |
+
- "Help me understand"
|
35 |
+
- "Summarize"
|
36 |
+
- "Make a recommendation on"
|
37 |
+
- "Answer this question"
|
38 |
+
- "How do you approach"
|
39 |
+
- "Explain the concept of"
|
40 |
+
- "Give an overview of"
|
41 |
+
- "Provide information about"
|
42 |
+
- "Help me understand the principles of"
|
43 |
+
- "Summarize the key components of"
|
44 |
+
- "Make a recommendation on how to"
|
45 |
+
- "Answer this question:"
|
46 |
+
negative_prompts:
|
47 |
+
- "Provide in-depth information about quantum computing."
|
48 |
+
- "Explain the inner workings of an internal combustion engine."
|
49 |
+
- "Give a detailed tutorial on advanced calculus."
|
50 |
+
- "Summarize the latest research in genetic engineering."
|
51 |
+
- "Interpret financial markets and stock trends."
|
52 |
+
- "Analyze the chemical composition of"
|
53 |
+
- "Develop a blueprint for."
|
54 |
+
- "Offer a critique of a modern art piece."
|
55 |
+
- "Provide a technical review of"
|
56 |
+
- "Conduct a linguistic analysis of an ancient language."
|
57 |
+
- "Write a user manual for advanced medical equipment."
|
58 |
+
- "Give a step-by-step guide on piloting an aircraft."
|
59 |
+
- "Conduct an in-depth analysis of this code"
|
60 |
+
- "Explain the physics behind black holes."
|
61 |
+
- "Provide a strategy for managing a cyber attack"
|
62 |
+
- "Develop an algorithm for predictive analytics in finance."
|
63 |
+
- "Provide information about advanced programming algorithms."
|
64 |
+
- "Help me understand the details of this code"
|
65 |
+
- "Summarize the process of cellular respiration."
|
66 |
+
- "Improve the security of"
|
67 |
+
- "What are the latest advancements in artificial intelligence?"
|
68 |
+
- "Provide detailed technical coding solutions."
|
69 |
+
- "Analyze complex scientific data and statistics."
|
70 |
+
- "Offer medical diagnoses based on symptoms."
|
71 |
+
- "Conduct a detailed financial audit of a company."
|
72 |
+
- "Perform real-time translation of multiple languages."
|
73 |
+
- "Create high-resolution graphic designs."
|
74 |
+
- "Develop complex mathematical proofs."
|
75 |
+
- "Offer legal advice on specific cases."
|
76 |
+
- "Write a detailed manual on advanced mechanical engineering."
|
77 |
+
- "Conduct an in-depth psychological assessment."
|
78 |
+
- "Perform a security analysis of a computer network."
|
79 |
+
- "Compose an original piece of music."
|
80 |
+
- "Plan and execute a scientific experiment."
|
81 |
+
- "Provide professional career counseling."
|
82 |
+
- "Develop a complex database management system."
|
83 |
+
- "Write a software program for data analysis."
|
84 |
+
- "Give expert advice on cyber"
|
85 |
+
- "Conduct a pentesting security audit"
|
86 |
+
- source_model: "fblgit/UNA-dolphin-2.6-mistral-7b-dpo-laser"
|
87 |
+
positive_prompts:
|
88 |
+
- "Provide step-by-step coding instructions for..."
|
89 |
+
- "Draft a function with detailed steps in [language]"
|
90 |
+
- "Guide me through coding a simple [type of application or script]"
|
91 |
+
- "Recommend best practices for code implementation in [context]"
|
92 |
+
- "Generate a regex pattern for extracting [specific data]"
|
93 |
+
- "Create a regex for matching [pattern]"
|
94 |
+
- "Explain the purpose of this regex pattern"
|
95 |
+
- "Compose regex for [specific use case]"
|
96 |
+
- "Annotate this code with detailed comments for each line"
|
97 |
+
- "Add explanatory comments to this script"
|
98 |
+
- "Comment on each part of this code for clarity"
|
99 |
+
- "Develop a script to [accomplish task]"
|
100 |
+
- "Design a database schema for [specific use case]"
|
101 |
+
- "Outline secure methods for [specific operation]"
|
102 |
+
- "Guide on optimizing [specific aspect] in this code"
|
103 |
+
- "Refactor this code for better readability and efficiency"
|
104 |
+
- "Compare and contrast these code snippets"
|
105 |
+
- "Identify the programming language of this snippet"
|
106 |
+
- "Demonstrate the usage of [specific tool/library/API]"
|
107 |
+
- "Show implementation steps for this [feature/concept]"
|
108 |
+
- "Teach how to use [specific tool/library/framework]"
|
109 |
+
- "Generate a README file for this project"
|
110 |
+
- "Create a manual page for [specific tool/command]"
|
111 |
+
- "Produce comprehensive documentation for this code"
|
112 |
+
- "Build detailed documentation for [specific module]"
|
113 |
+
- "Explain the underlying concept of this code snippet"
|
114 |
+
- "Propose enhancements for this script"
|
115 |
+
- "Suggest improvements for this API call integration"
|
116 |
+
- "Diagnose and solve this coding issue"
|
117 |
+
- "Demonstrate robust error handling in this code"
|
118 |
+
- "Debug and resolve issues in this script"
|
119 |
+
- "Design a user-friendly GUI for this script's functionality"
|
120 |
+
- "Detail the deployment process for this application"
|
121 |
+
- "Deploy an app designed to [perform function]"
|
122 |
+
- "Set up a web service for [specific purpose]"
|
123 |
+
- "Develop a website with [specific features]"
|
124 |
+
- "Craft a webpage showcasing [specific content]"
|
125 |
+
- "Illustrate data flow in this code architecture"
|
126 |
+
- "Convert this code from [language A] to [language B]"
|
127 |
+
- "Translate this script into [different programming language]"
|
128 |
+
- "Explain resource management techniques in [context]"
|
129 |
+
- "Build a basic API endpoint for [functionality]"
|
130 |
+
- "Strategies to enhance scalability in [context]"
|
131 |
+
- "Conduct a security review for this code"
|
132 |
+
- "Enhance security measures in [application/module]"
|
133 |
+
- "Set up a development environment for [language/framework]"
|
134 |
+
- "Visualize data from [specific dataset]"
|
135 |
+
- "Generate a dataset for [specific use case]"
|
136 |
+
- "Scripting guide for automating [task/process]"
|
137 |
+
- "Utilize this code for [specific purpose]"
|
138 |
+
- "Principles of object-oriented programming in [language]"
|
139 |
+
- "Create a mobile-responsive layout for this web app"
|
140 |
+
- "Explain the debugging process for this code"
|
141 |
+
- "Compose code to accomplish [task]"
|
142 |
+
- "Guidance on writing code for [specific purpose]"
|
143 |
+
- "I need a script for [specific function]"
|
144 |
+
- "Clarify the functionality of this code"
|
145 |
+
- "What is the purpose of this code segment?"
|
146 |
+
- "Enhance this code for [specific improvement]"
|
147 |
+
- "Develop a program that [solves problem]"
|
148 |
+
- "Code needed for [specific task]"
|
149 |
+
- "Program a solution for [problem statement]"
|
150 |
+
- "Enhance this function's performance by..."
|
151 |
+
- "Refactor code for better readability in [context]"
|
152 |
+
- "Craft a custom function for [specific requirement]"
|
153 |
+
- "Reduce computational complexity in this algorithm by..."
|
154 |
+
- "Extend the codebase to include [new feature]"
|
155 |
+
- "Incorporate this API into an existing application"
|
156 |
+
- "Assist in troubleshooting and bug fixing for [issue]"
|
157 |
+
- "Review and prep this code for deployment"
|
158 |
+
- "Analyze error logs for potential issues in [context]"
|
159 |
+
- "Create unit tests for [module/component]"
|
160 |
+
- "Evaluate methodologies for [problem-solving]"
|
161 |
+
- "Research [topic] online"
|
162 |
+
- "Utilize the [plugin/tool] to achieve [result]"
|
163 |
+
- "Design an efficient search algorithm for [data type]"
|
164 |
+
- "Create a web crawler for [specific data extraction]"
|
165 |
+
- "Application of web sockets in [real-time scenario]"
|
166 |
+
- "Guide to integrating a third-party library in [framework]"
|
167 |
+
- "Best practices in API design for [application type]"
|
168 |
+
negative_prompts:
|
169 |
+
- "Provide a detailed analysis of historical events."
|
170 |
+
- "Give medical advice for treating a specific illness."
|
171 |
+
- "Write a comprehensive review of a novel."
|
172 |
+
- "Explain legal implications of a contract."
|
173 |
+
- "Develop a marketing strategy for a new product."
|
174 |
+
- "Offer financial advice for stock investments."
|
175 |
+
- "Create a recipe for a gourmet dish."
|
176 |
+
- "Teach a foreign language lesson."
|
177 |
+
- "Compose a symphony or musical piece."
|
178 |
+
- "Provide workout plans and fitness coaching."
|
179 |
+
- "Conduct a psychological analysis of a character."
|
180 |
+
- "Write a script for a movie or play."
|
181 |
+
- "Design a blueprint for architectural structures."
|
182 |
+
- "Give a tutorial on how to paint a landscape."
|
183 |
+
- "Explain quantum physics theories."
|
184 |
+
- "Offer career counseling and resume writing tips."
|
185 |
+
- "Teach how to repair a car engine."
|
186 |
+
- "Plan a travel itinerary for a world tour."
|
187 |
+
- "Guide on how to grow organic vegetables."
|
188 |
+
- "Discuss political strategies for an election campaign."
|
189 |
+
- source_model: "mlabonne/Marcoro14-7B-slerp"
|
190 |
+
positive_prompts:
|
191 |
+
- "Generate a creative story based on these keywords."
|
192 |
+
- "Explain a complex topic in simple terms"
|
193 |
+
- "Provide a detailed summary of"
|
194 |
+
- "Answer this question with factual accuracy"
|
195 |
+
- "Explain the historical significance of"
|
196 |
+
- "Provide a truthful and detailed account of"
|
197 |
+
- "Develop a strategy for solving a practical problem."
|
198 |
+
- "Explain the reasoning behind"
|
199 |
+
- "Provide an analysis of a moral dilemma with possible solutions."
|
200 |
+
negative_prompts:
|
201 |
+
- "imathematical problem-solving."
|
202 |
+
- "scientific theory explanations."
|
203 |
+
- "high-level abstract reasoning tasks."
|
204 |
+
- "professional advice in specialized fields like law or medicine."
|
205 |
+
- "provide me with a coding solution for"
|
206 |
+
- "Academic research"
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1176d98768b8d0df72bbbba8e812118074f4e4ac3788a73855475b1fc08b8ae
|
3 |
+
size 9919813712
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e78e25907148f0f76f6efaafa17727e5a46420b60af592f27ffdf326a84f0e75
|
3 |
+
size 9982454728
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2673b8be00f990c778a34542dc0fae6477dde4b6c060f9d9ee17735c3da00b8b
|
3 |
+
size 9982454728
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afbc1d9a1cd897bd0d03d61e30d647c44459046b781740b8673830fcef4bf9b9
|
3 |
+
size 7148170232
|
model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"metadata": {"mergekit_version": "0.0.3.2"}, "weight_map": {"model.embed_tokens.weight": "model-00001-of-00004.safetensors", "model.norm.weight": "model-00001-of-00004.safetensors", "lm_head.weight": "model-00001-of-00004.safetensors", "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.14.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.15.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.16.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.18.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.19.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.20.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.22.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.23.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.24.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.25.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.26.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.27.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.28.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.29.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.30.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.31.input_layernorm.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.2.w3.weight": "model-00001-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.0.w3.weight": "model-00001-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.1.w3.weight": "model-00001-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.0.w3.weight": "model-00002-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.1.w3.weight": "model-00002-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.2.w3.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.0.w2.weight": "model-00002-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.1.w2.weight": "model-00002-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.2.w2.weight": "model-00002-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.0.w2.weight": "model-00003-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.1.w2.weight": "model-00003-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.2.w2.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.0.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.1.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.2.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.3.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.4.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.5.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.6.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.7.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.8.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.9.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.10.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.11.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.12.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.13.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.14.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.15.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.16.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.17.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.1.w1.weight": "model-00003-of-00004.safetensors", "model.layers.18.block_sparse_moe.experts.2.w1.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.0.w1.weight": "model-00003-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.22.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.23.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.24.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.25.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.26.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.27.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.28.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.29.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.30.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.0.w1.weight": "model-00004-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.1.w1.weight": "model-00004-of-00004.safetensors", "model.layers.31.block_sparse_moe.experts.2.w1.weight": "model-00004-of-00004.safetensors", "model.layers.0.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.1.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.2.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.3.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.4.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.7.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.8.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.9.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.10.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.16.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.17.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.18.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.19.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.20.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.1.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.2.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.3.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.4.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.5.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.8.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.9.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.10.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.11.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.17.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.18.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.19.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.20.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.21.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors", "model.layers.0.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.1.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.2.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.3.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.4.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.5.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.6.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.7.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.8.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.9.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.10.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.11.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.12.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.13.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.14.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.15.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.16.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.17.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.18.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.19.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.20.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.21.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.22.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.23.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.24.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.25.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.26.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.27.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.28.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.29.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.30.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors", "model.layers.31.block_sparse_moe.gate.weight": "model-00004-of-00004.safetensors"}}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>"
|
6 |
+
],
|
7 |
+
"bos_token": {
|
8 |
+
"content": "<s>",
|
9 |
+
"lstrip": false,
|
10 |
+
"normalized": false,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"eos_token": {
|
15 |
+
"content": "</s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"pad_token": "<s>",
|
22 |
+
"unk_token": {
|
23 |
+
"content": "<unk>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false
|
28 |
+
}
|
29 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"additional_special_tokens": [
|
31 |
+
"<unk>",
|
32 |
+
"<s>",
|
33 |
+
"</s>"
|
34 |
+
],
|
35 |
+
"bos_token": "<s>",
|
36 |
+
"clean_up_tokenization_spaces": false,
|
37 |
+
"eos_token": "</s>",
|
38 |
+
"legacy": true,
|
39 |
+
"model_max_length": 1000000000000000019884624838656,
|
40 |
+
"pad_token": "<s>",
|
41 |
+
"padding_side": "left",
|
42 |
+
"sp_model_kwargs": {},
|
43 |
+
"spaces_between_special_tokens": false,
|
44 |
+
"split_special_tokens": false,
|
45 |
+
"tokenizer_class": "LlamaTokenizer",
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"use_default_system_prompt": true
|
48 |
+
}
|