models: - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO parameters: weight: 0.20 # Strong IFEval and factual reasoning baseline density: 0.6 - model: allknowingroger/QwenSlerp6-14B parameters: weight: 0.20 # Balanced reasoning across multiple benchmarks density: 0.6 - model: CultriX/SeQwence-14B-EvolMerge parameters: weight: 0.15 # Generalist model for BBH and MUSR density: 0.5 - model: CultriX/Qwen2.5-14B-Wernicke parameters: weight: 0.15 # QA leader for GPQA and MUSR density: 0.6 # Increase density to preserve more QA-specific parameters - model: qingy2019/Qwen2.5-Math-14B-Instruct parameters: weight: 0.15 # Specialist for MATH and advanced reasoning density: 0.6 - model: sometimesanotion/Qwen2.5-14B-Vimarckoso parameters: weight: 0.10 # MUSR leader for nuanced multi-step reasoning density: 0.5 - model: CultriX/Qwen2.5-14B-SLERPv7 parameters: weight: 0.05 # Contextual reasoning support for BBH and tiny benchmarks density: 0.5 base_model: CultriX/SeQwence-14Bv1 merge_method: dare_ties parameters: normalize: true int8_mask: true dtype: bfloat16 adaptive_merge_parameters: task_weights: IFEval: 1.3 # Enhanced instruction-following and factual tasks BBH: 1.3 # Strengthened complex reasoning capabilities MATH_Lvl_5: 1.4 # Prioritize advanced mathematical tasks GPQA: 1.4 # Boost graduate-level knowledge capabilities MuSR: 1.3 # Strengthen multi-step reasoning on complex tasks MMLU_PRO: 1.2 # Ensure broad domain understanding smoothing_factor: 0.15 # Sharper blending for reasoning and factual tasks gradient_clipping: 0.9 # Tighter control for precise parameter scaling