File size: 3,251 Bytes
8fd624d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
base_model:
- VAGOsolutions/SauerkrautLM-v2-14b-DPO
- qingy2019/Qwen2.5-Math-14B-Instruct
- CultriX/Qwen2.5-14B-Wernickev3
- CultriX/SeQwence-14Bv1
- CultriX/Qwen2.5-14B-Emergedv3
- CultriX/Qwen2.5-14B-Unity
- allknowingroger/QwenSlerp6-14B
library_name: transformers
tags:
- mergekit
- merge

---
# merge

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [DARE](https://arxiv.org/abs/2311.03099) [TIES](https://arxiv.org/abs/2306.01708) merge method using [CultriX/SeQwence-14Bv1](https://huggingface.co/CultriX/SeQwence-14Bv1) as a base.

### Models Merged

The following models were included in the merge:
* [VAGOsolutions/SauerkrautLM-v2-14b-DPO](https://huggingface.co/VAGOsolutions/SauerkrautLM-v2-14b-DPO)
* [qingy2019/Qwen2.5-Math-14B-Instruct](https://huggingface.co/qingy2019/Qwen2.5-Math-14B-Instruct)
* [CultriX/Qwen2.5-14B-Wernickev3](https://huggingface.co/CultriX/Qwen2.5-14B-Wernickev3)
* [CultriX/Qwen2.5-14B-Emergedv3](https://huggingface.co/CultriX/Qwen2.5-14B-Emergedv3)
* [CultriX/Qwen2.5-14B-Unity](https://huggingface.co/CultriX/Qwen2.5-14B-Unity)
* [allknowingroger/QwenSlerp6-14B](https://huggingface.co/allknowingroger/QwenSlerp6-14B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
models:
  - model: CultriX/SeQwence-14Bv1
    parameters:
      weight: 0.22        # Boosted slightly to improve general task performance
      density: 0.62       # Prioritize generalist adaptability
  - model: allknowingroger/QwenSlerp6-14B
    parameters:
      weight: 0.18
      density: 0.59       # Slight increase to enhance contextual reasoning (tinyHellaswag)
  - model: CultriX/Qwen2.5-14B-Wernickev3
    parameters:
      weight: 0.16
      density: 0.56       # Minor increase to stabilize GPQA and MUSR performance
  - model: CultriX/Qwen2.5-14B-Emergedv3
    parameters:
      weight: 0.15        # Increase weight for domain-specific expertise
      density: 0.55
  - model: VAGOsolutions/SauerkrautLM-v2-14b-DPO
    parameters:
      weight: 0.12
      density: 0.56       # Enhance factual reasoning and IFEval contributions
  - model: CultriX/Qwen2.5-14B-Unity
    parameters:
      weight: 0.10
      density: 0.53
  - model: qingy2019/Qwen2.5-Math-14B-Instruct
    parameters:
      weight: 0.10
      density: 0.51       # Retain focus on MATH and advanced reasoning tasks

merge_method: dare_ties
base_model: CultriX/SeQwence-14Bv1
parameters:
  normalize: true
  int8_mask: true
dtype: bfloat16
tokenizer_source: Qwen/Qwen2.5-14B-Instruct

adaptive_merge_parameters:
  task_weights:
    IFEval: 1.5           # Strengthened for better instruction-following
    BBH: 1.3
    MATH: 1.6             # Emphasize advanced reasoning and problem-solving
    GPQA: 1.4             # Improve factual recall and logical QA tasks
    MUSR: 1.5             # Strengthened multi-step reasoning capabilities
    MMLU-PRO: 1.3         # Slight boost for domain-specific multitask knowledge
  smoothing_factor: 0.19   # Refined for smoother blending of task strengths
gradient_clipping: 0.88    # Tightened slightly for precise parameter contribution

```