--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: aptner_deberta results: [] --- # aptner_deberta This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2929 - Precision: 0.5550 - Recall: 0.5835 - F1: 0.5689 - Accuracy: 0.9205 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.6136 | 0.59 | 500 | 0.3298 | 0.5007 | 0.5287 | 0.5143 | 0.9172 | | 0.308 | 1.19 | 1000 | 0.2929 | 0.5550 | 0.5835 | 0.5689 | 0.9205 | | 0.2428 | 1.78 | 1500 | 0.3124 | 0.5330 | 0.6192 | 0.5729 | 0.9177 | | 0.2088 | 2.37 | 2000 | 0.3204 | 0.5356 | 0.6440 | 0.5848 | 0.9147 | | 0.1783 | 2.97 | 2500 | 0.3319 | 0.5432 | 0.6760 | 0.6024 | 0.9149 | | 0.1434 | 3.56 | 3000 | 0.3371 | 0.5640 | 0.6494 | 0.6037 | 0.9203 | | 0.1352 | 4.15 | 3500 | 0.3827 | 0.5425 | 0.6249 | 0.5808 | 0.9135 | | 0.1135 | 4.74 | 4000 | 0.3862 | 0.5360 | 0.6760 | 0.5979 | 0.9136 | | 0.0987 | 5.34 | 4500 | 0.3978 | 0.5439 | 0.6497 | 0.5921 | 0.9141 | | 0.0942 | 5.93 | 5000 | 0.3738 | 0.5791 | 0.6425 | 0.6091 | 0.9225 | | 0.0746 | 6.52 | 5500 | 0.4269 | 0.5490 | 0.6479 | 0.5943 | 0.9161 | | 0.0727 | 7.12 | 6000 | 0.4236 | 0.5579 | 0.6437 | 0.5977 | 0.9171 | | 0.0661 | 7.71 | 6500 | 0.4239 | 0.5650 | 0.6479 | 0.6036 | 0.9200 | | 0.0578 | 8.3 | 7000 | 0.4485 | 0.5579 | 0.6332 | 0.5932 | 0.9175 | | 0.0505 | 8.9 | 7500 | 0.4553 | 0.5546 | 0.6353 | 0.5922 | 0.9163 | | 0.0513 | 9.49 | 8000 | 0.4629 | 0.5587 | 0.6425 | 0.5977 | 0.9171 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1