--- license: apache-2.0 base_model: jackaduma/SecBERT tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Cyber-ThreaD/SecBERT-AttackER results: [] --- # Cyber-ThreaD/SecBERT-AttackER This model is a fine-tuned version of [jackaduma/SecBERT](https://huggingface.co/jackaduma/SecBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6932 - Precision: 0.3931 - Recall: 0.4987 - F1: 0.4397 - Accuracy: 0.7295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 1.7927 | 0.4 | 500 | 1.5607 | 0.0956 | 0.0780 | 0.0859 | 0.6139 | | 1.3551 | 0.81 | 1000 | 1.3530 | 0.2064 | 0.2381 | 0.2211 | 0.6495 | | 1.0432 | 1.21 | 1500 | 1.3107 | 0.2269 | 0.3082 | 0.2614 | 0.6740 | | 0.8468 | 1.61 | 2000 | 1.2497 | 0.2447 | 0.3373 | 0.2836 | 0.6767 | | 0.7775 | 2.01 | 2500 | 1.2710 | 0.2895 | 0.3730 | 0.3260 | 0.6939 | | 0.5374 | 2.42 | 3000 | 1.3020 | 0.3006 | 0.4048 | 0.3450 | 0.7044 | | 0.5071 | 2.82 | 3500 | 1.2614 | 0.2959 | 0.4048 | 0.3419 | 0.7081 | | 0.4237 | 3.22 | 4000 | 1.3251 | 0.3367 | 0.4405 | 0.3817 | 0.7166 | | 0.3597 | 3.63 | 4500 | 1.3853 | 0.3423 | 0.4524 | 0.3897 | 0.7125 | | 0.3632 | 4.03 | 5000 | 1.4156 | 0.3559 | 0.4524 | 0.3984 | 0.7127 | | 0.2589 | 4.43 | 5500 | 1.4472 | 0.3504 | 0.4709 | 0.4018 | 0.7173 | | 0.323 | 4.83 | 6000 | 1.3997 | 0.3452 | 0.4603 | 0.3946 | 0.7222 | | 0.2167 | 5.24 | 6500 | 1.5194 | 0.3467 | 0.4590 | 0.3950 | 0.7233 | | 0.2363 | 5.64 | 7000 | 1.5585 | 0.3507 | 0.4722 | 0.4025 | 0.7222 | | 0.2721 | 6.04 | 7500 | 1.5420 | 0.3715 | 0.4854 | 0.4209 | 0.7210 | | 0.2073 | 6.45 | 8000 | 1.5878 | 0.3536 | 0.4854 | 0.4091 | 0.7147 | | 0.2021 | 6.85 | 8500 | 1.6637 | 0.3722 | 0.4854 | 0.4214 | 0.7197 | | 0.1648 | 7.25 | 9000 | 1.6724 | 0.3795 | 0.4788 | 0.4234 | 0.7255 | | 0.1927 | 7.66 | 9500 | 1.6891 | 0.3801 | 0.4947 | 0.4299 | 0.7245 | | 0.1958 | 8.06 | 10000 | 1.6774 | 0.3937 | 0.4974 | 0.4395 | 0.7281 | | 0.1508 | 8.46 | 10500 | 1.7379 | 0.3815 | 0.4854 | 0.4272 | 0.7259 | | 0.184 | 8.86 | 11000 | 1.7001 | 0.3863 | 0.5013 | 0.4364 | 0.7277 | | 0.1696 | 9.27 | 11500 | 1.6932 | 0.3931 | 0.4987 | 0.4397 | 0.7295 | | 0.1425 | 9.67 | 12000 | 1.7137 | 0.3824 | 0.5013 | 0.4339 | 0.7276 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0 ### Citing & Authors If you use the model kindly cite the following work ``` @inproceedings{deka2024attacker, title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset}, author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa}, booktitle={International Conference on Web Information Systems Engineering}, pages={255--270}, year={2024}, organization={Springer} } ```