SecureBERT-DNRTI / README.md
Cyber-ThreaD's picture
Update README.md
1022b9a verified
|
raw
history blame
3.39 kB
metadata
license: bigscience-openrail-m
base_model: ehsanaghaei/SecureBERT
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: Cyber-ThreaD/SecureBERT-DNRTI
    results: []

Cyber-ThreaD/SecureBERT-DNRTI

This model is a fine-tuned version of ehsanaghaei/SecureBERT on the DNRTI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2427
  • Precision: 0.7694
  • Recall: 0.7854
  • F1: 0.7773
  • Accuracy: 0.9382

It achieves the following results on the prediction set:

  • Precision: 0.8346
  • Recall: 0.8403
  • F1: 0.8374
  • Accuracy: 0.9554

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.7821 0.76 500 0.4215 0.5219 0.5919 0.5547 0.8745
0.3559 1.52 1000 0.3152 0.6272 0.6587 0.6426 0.9008
0.2807 2.28 1500 0.2952 0.6445 0.7232 0.6816 0.9084
0.2272 3.04 2000 0.2793 0.6682 0.7513 0.7073 0.9161
0.1837 3.81 2500 0.2489 0.7151 0.7526 0.7334 0.9258
0.1497 4.57 3000 0.2511 0.7254 0.7826 0.7529 0.9286
0.1371 5.33 3500 0.2496 0.7425 0.7757 0.7587 0.9331
0.1135 6.09 4000 0.2554 0.7289 0.8075 0.7662 0.9325
0.1018 6.85 4500 0.2427 0.7694 0.7854 0.7773 0.9382
0.0899 7.61 5000 0.2516 0.7583 0.8167 0.7864 0.9378
0.0809 8.37 5500 0.2459 0.7717 0.8176 0.7940 0.9406
0.0763 9.13 6000 0.2553 0.7518 0.8217 0.7852 0.9392
0.0687 9.89 6500 0.2534 0.7621 0.8204 0.7902 0.9407

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1

Citing & Authors

If you use the model kindly cite the following work

@inproceedings{deka2024attacker,
  title={AttackER: Towards Enhancing Cyber-Attack Attribution with a Named Entity Recognition Dataset},
  author={Deka, Pritam and Rajapaksha, Sampath and Rani, Ruby and Almutairi, Amirah and Karafili, Erisa},
  booktitle={International Conference on Web Information Systems Engineering},
  pages={255--270},
  year={2024},
  organization={Springer}
}